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Executive Summary 
This report describes the Total Energy Model (TEM) 4.0, a novel bottom-up hybrid model 
designed to forecast data centre energy consumption and evaluate the effect of 
possible policy interventions on energy use. Moving away from traditional methods that 
rely on extrapolating equipment sales or data traffic, the TEM focuses on computational 
capacity and efficiency metrics derived primarily from CPU sales data and standardized 
Server Efficiency Rating Tool (SERT) performance measurements. It segments the 
market by data centre type (traditional, cloud, hyperscale, AI) and workload (general 
compute, AI) across five global regions.    

Policy Modelling Capabilities 
A key strength of the TEM is its structure, which is designed to support the analysis of 
various policy interventions. Policymakers can use the model, including a simplified 
dashboard, to assess the impacts of:  

• Minimum efficiency standards or labels for ICT equipment.  
• Server and infrastructure utilisation . 
• Infrastructure efficiency improvements (e.g., PUE targets).  
• Accelerated data centre consolidation (shifting workloads from traditional to 

cloud/hyperscale).    
• Changes to server lifetimes to analyse lifecycle impacts.  

This functionality allows evaluation of potential energy savings, feeding into cost-benefit 
analyses of different policy scenarios.  

Potential for Improved Energy Consumption Modelling with Better 
Evidence 

While the TEM offers a sophisticated framework, the report highlights significant 
uncertainties and areas where improved data could enhance modelling accuracy, 
particularly for energy consumption projections: 

• AI Sector Uncertainty: Forecasting AI energy consumption is extremely 
challenging due to the sector's immaturity, rapid technological evolution, limited 
data availability (e.g., sales data, performance benchmarks beyond MLPerf), and 
the difficulty in predicting future efficiency gains. Current extrapolations produce 
highly uncertain, unrealistic results if practical constraints (chip supply, power 
availability, capital) aren't considered (which require economic modelling, 
beyond the scope of TEM).  

• Data Segmentation: Currently the evidence base for allocating computational 
capacity accurately across different data centre segments (traditional, cloud, 
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hyperscale) is weak, affecting the accuracy of energy estimates due to varying 
utilisation rates for each segment.  

• Performance Benchmark Limitations: For non-AI servers SERT provides 
standardized CPU performance data, but its representativeness of real-world 
configurations is not established – it needs validation. For AI, performance data 
from MLPerf data is limited, evolves rapidly, lacks comprehensive power data for 
all workloads (e.g., training), and its correlation with theoretical performance 
(like FLOPS) needs further analysis. 

• PUE Data: Power Usage Effectiveness (PUE) data, though the best available 
metric for infrastructure efficiency, suffers from limitations and potential 
reporting bias towards more efficient centres. 

• Storage & Networking: These components are currently modelled as a simple 
percentage of server energy; a more detailed, data-driven approach could 
improve accuracy.  

• Server Lifetimes: Assumptions about server lifetimes, especially for rapidly 
evolving AI hardware, significantly impact installed base and energy estimates.  
Data on actual lifetimes would improve accuracy. 

Conclusion on Model Utility 
The TEM 4.0 provides a valuable framework for policy analysis, particularly for 
established non-AI server technologies. However, due to significant uncertainties, 
especially regarding AI, policymakers must use the model cautiously, understanding the 
limitations of the model and the current evidence base. The model is structured for 
relatively easy updates as better data becomes available (e.g., from reporting mandates 
or new research), allowing for improved projections and policy assessments over time. 
Integrating insights from financial/economic models that incorporate market 
constraints could further enhance its utility, though this would require careful 
verification. 
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Glossary 
AI Artificial Intelligence 
CPU Central Processing Unit 

EDNA 

IEA’s Energy Efficient End-Use Equipment Technology 
Collaboration Programme: Efficient, Demand Flexible 
Networked Appliances 

GPU Graphics Processing Unit 
LLM Large Language Models 
ML Machine Learning 
PUE Power Usage Effectiveness 
SEED Server Energy Efficiency Database 
SERT Server Efficiency Rating Tool  
TCO Total Cost of Ownership 
TGG The Green Grid 
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1 Introduction 
Data centre energy consumption continues to grow rapidly, driven by increased 
digitalization, cloud computing adoption, and the emergence of AI workloads. Current 
estimates suggest data centres account for approximately 1-2% of global electricity 
consumption, with projections indicating significant further growth through 2040. This 
growth presents challenges for electricity grid capacity, renewable energy adoption, and 
climate goals, making accurate forecasting and policy evaluation critical. 

Previous modelling approaches have typically relied on extrapolating current trends in 
equipment sales or data traffic. However, these methods have led to widely divergent 
projections, with estimated 2030 data centre energy consumption varying by more than 
an order of magnitude across different studies. These disparities arise from several 
limitations in traditional approaches: dependency on short-term sales data that 
becomes increasingly unreliable for long-term forecasting, difficulty accounting for 
technological transitions like the rise of AI accelerators, and limited ability to model the 
impacts of policy interventions. 

The rapid evolution of computing technology further complicates forecasting efforts. 
While the physical form factor of servers has remained relatively stable, internal 
components continue to advance rapidly, with significant changes in CPU architecture, 
memory technologies, and accelerator integration. Traditional models that rely on 
server unit sales struggle to account for these technological transitions, particularly 
when projecting more than 5-10 years into the future. 

This report presents a novel bottom-up hybrid model that addresses these challenges 
by shifting focus from equipment sales to computational capacity and efficiency 
metrics. The model's foundation rests on three key principles: 

First, it uses CPU sales data combined with standardized performance measurements 
from the Server Efficiency Rating Tool (SERT) as primary inputs. This provides accurate 
near-term data while enabling the model to track both performance improvements and 
energy efficiency trends. The standardized nature of SERT measurements ensures 
consistency across different hardware generations and manufacturers. 

Second, the model converts these inputs into metrics of total computational capacity 
and system-level efficiency. This abstraction away from specific hardware 
implementations allows for more reliable long-term forecasting, as it focuses on 
fundamental computational demands rather than particular equipment form factors or 
architectures. 

Third, the model incorporates detailed segmentation of the data centre market, tracking 
three distinct categories of general compute (traditional, cloud, and hyperscale) and 
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separately modelling AI workloads. This granularity enables analysis of how different 
sectors evolve and allows policymakers to evaluate targeted interventions for specific 
market segments. 

The model's structure specifically supports the analysis of policy interventions through 
several mechanisms: 

• Evaluation of minimum efficiency standards for servers and infrastructure 
• Modelling of utilisation improvements through workload consolidation 
• Assessment of data centre consolidation scenarios 
• Analysis of accelerated retirement programmes for legacy equipment 
• Investigation of policies to improve infrastructure efficiency 

Infrastructure energy consumption is modelled using Power Usage Effectiveness (PUE), 
with different trajectories for each data centre type based on technological capabilities 
and economic factors. While PUE has known limitations as a metric, it remains the 
most widely available measure of infrastructure efficiency and provides sufficient 
accuracy for long-term modelling purposes. 

Our projections indicate that energy consumption will continue to grow. These results 
reflect several important market dynamics, including the rapid growth of AI workloads 
and continued migration to cloud environments. The model's results have been 
validated against historical data where available and compared with previous studies to 
provide a reality check. 

However, modelling the growth in AI at this point in time is a particular challenge.  There 
may be bottlenecks in chip and power supply, future efficiency gains are hard to model, 
and data availability is low.  This means that there is high uncertainty in energy 
projections in this sector which becomes more extreme the further into the future the 
projections go. 

The remainder of this report is structured as follows: Section 2 presents the detailed 
methodology, including data sources and key assumptions. Section 3 describes the 
policy modelling options. Section 4 describes the baseline scenario results and 
projections through 2040.  Section 5 compares the results with recent projections by 
other authors. Section 6 presents sensitivity analyses and discusses key uncertainties. 
Finally, Section 7 offers conclusions and recommendations for policymakers. 

2 Methodology 

The model employs a bottom-up hybrid approach that combines CPU sales data with 
standardized performance metrics to estimate current energy consumption and project 
future trends. This section describes the model's structure, key calculations, and data 
sources. 
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2.1  Model Overview 

The fundamental calculation flow consists of four main stages: 

1. Converting CPU sales and performance data into total market computational 
capacity 

2. Determining computations and energy consumption based on utilisation and 
efficiency 

3. Adding storage and networking energy based on a proportion of computational 
energy 

4. Adding infrastructure energy based on PUE 

A schematic of the model is shown in Figure 1.  

Figure 1 Schematic of model structure 

 

2.2 Market Segmentation and workload types 

The model segments data centres into four categories: 

1. Traditional (small sized, less efficient) 
2. Cloud (large-medium scale, efficient) 
3. Cloud (hyperscale very efficient) 
4. AI (hyperscale, very efficient) 

Each segment has distinct characteristics for: 

• Computing capacity 
• Computing efficiency 
• Server utilisation  
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• PUE values 

This segmentation is the weakest part of the model as there is no good evidence to 
determine how much of the computing capacity is found in each data centre segment.  
Because server utilisation varies by segment, this can affect the energy consumption 
estimates. The servers are therefore allocated by the total number of cores, with lower 
core counts in small DCs and highest in the hyperscale DCs. This results in different 
efficiency characteristics for each segment.  

The original proposal was to also estimate the energy of edge data centres but the 
definition was too broad to determine the market size accurately. When comparing 
reports about edge data centres and computing, they ranged from 1+MW data centres 
to mobile phones and included servers located at mobile phone masts and driving-
assisted cars but were rarely clear about what exactly was in scope or give a breakdown 
of devices. Given the difficulty in estimating computing capacity of the existing 
segments, it is excluded as a separate segment. However, the energy consumption 
should still be captured in the sales of servers and GPUs allocated to these segments.  

2.2.1 Workload Types 

Computational workloads are categorized as: 

1. General compute 
2. AI (artificial Intelligence)/ML(Machine Learning) workloads 

AI covers workloads that require an accelerator card, usually a GPU, to perform the 
calculations at scale with sufficient performance and efficiency. General computing 
includes all other workloads, ie servers without a GPU.  

We acknowledge that some non-AI computation (eg high performance scientific 
calculations) will use GPU and not all AI computation will be performed on GPUs, but 
we consider that this is a reasonable approximation. 

2.2.2 Regional Considerations 

While the model is global in scope, five regions are defined: 

• North America 
• South America 
• Europe 
• Asia (including Oceania) 
• Middle East and Africa (MEA) 

The model incorporates regional variations in: 

• Computing capacity 
• Computing efficiency 



 

 12 

In total 40 subtypes are created for the base scenario as shown in Table 1. 

Table 1 Subtypes used in model 

Scenario Region Computation DC type Product 
Base N. America Traditional Small/medium ICT 
Base S. America Traditional Small/medium ICT 

Base Europe Traditional Small/medium ICT 

Base Asia Traditional Small/medium ICT 

Base MEA Traditional Small/medium ICT 

Base N. America Cloud Large ICT 

Base S. America Cloud Large ICT 

Base Europe Cloud Large ICT 

Base Asia Cloud Large ICT 

Base MEA Cloud Large ICT 

Base N. America Cloud Hyperscale ICT 

Base S. America Cloud Hyperscale ICT 

Base Europe Cloud Hyperscale ICT 

Base Asia Cloud Hyperscale ICT 

Base MEA Cloud Hyperscale ICT 

Base N. America AI Hyperscale ICT 

Base S. America AI Hyperscale ICT 

Base Europe AI Hyperscale ICT 

Base Asia AI Hyperscale ICT 

Base MEA AI Hyperscale ICT 

          

Base N. America Traditional Small/medium DC Infrastructure 

Base S. America Traditional Small/medium DC Infrastructure 

Base Europe Traditional Small/medium DC Infrastructure 

Base Asia Traditional Small/medium DC Infrastructure 

Base MEA Traditional Small/medium DC Infrastructure 

Base N. America Cloud Large DC Infrastructure 

Base S. America Cloud Large DC Infrastructure 

Base Europe Cloud Large DC Infrastructure 

Base Asia Cloud Large DC Infrastructure 

Base MEA Cloud Large DC Infrastructure 

Base N. America Cloud Hyperscale DC Infrastructure 

Base S. America Cloud Hyperscale DC Infrastructure 

Base Europe Cloud Hyperscale DC Infrastructure 

Base Asia Cloud Hyperscale DC Infrastructure 

Base MEA Cloud Hyperscale DC Infrastructure 

Base N. America AI Hyperscale DC Infrastructure 

Base S. America AI Hyperscale DC Infrastructure 
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Scenario Region Computation DC type Product 
Base Europe AI Hyperscale DC Infrastructure 

Base Asia AI Hyperscale DC Infrastructure 

Base MEA AI Hyperscale DC Infrastructure 

2.2.3 Energy modes 

The energy consumption for each subtype is broken down into three modes: 

• High utilisation period 
• Low utilisation period 
• Other ICT (network and storage energy) which covers both high and low 

utilisation 

This breakdown covers both the ICT energy use and the DC infrastructure. This allows 
the PUE to be changed between high and low utilisation, although for this report, it is 
kept the same.  

2.3 Computational Capacity 
The computational capacity is a function of the performance of the product and the 
sales of the product. The product definition can vary as long as the performance is 
based on the same unit. For each DC segment i in year t: 

Computational_Capacity(i,t) = Sales(i,t) × Performance_Score(i,t) 

 

2.4 Non-AI Computational Capacity Calculation 

The model calculates total computational capacity using server sales data, broken 
down by number of cores per CPU, combined with SERT performance metrics. The 
number of cores is considered the primary factor determining the performance of the 
server. The performance per core has improved over time and the number of cores per 
server has also increased.  

Where Performance_Score is derived from SERT worklet results for average number of 
cores per server.  Figure 2 shows the projected global CPU capacity. 
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Figure 2 Modelled global CPU (that is, non AI) computational capacity 

 

 

The server sales data are based on a report by FMI1 report and adjusted using data from 
Statista2,3,4. This shows a sharp rise in sales over the short term, while previously it has 
been relatively flat. Short term forecasts show that sales are expected to remain at a 
higher level.  We extrapolated future sales based on current trends. 

CPU sales by cores  

The number of CPU sales is from FMI (2024) and adjusted based on more detailed 
investor analysis data (Bruzzone, 2024)5 which more closely matches our 

 
1 Future Market Insights (2024) Global Data Center CPU market 
2 IHS Markit; Statista estimates (2019) Global server unit shipments 2016-2022, by technology Statista 
Accessed January 2025 
https://www.statista.com/statistics/934508/server-unit-shipments-by-technology-worldwide/ 
3 MIC (2023) Global server shipments 2018-2027 Statista Accessed Jan 2025 
https://www.statista.com/statistics/1417940/global-server-shipments/ 
4 IDC; TrendForce (2021) Server unit shipments worldwide 2011-2021, by quarter Statista Accessed Jan 
2025 
https://www.statista.com/statistics/287005/global-server-shipments/  
5 Bruzzone, M. (2024) CPU Today 

https://www.statista.com/statistics/934508/server-unit-shipments-by-technology-worldwide/
https://www.statista.com/statistics/1417940/global-server-shipments/
https://www.statista.com/statistics/287005/global-server-shipments/
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understanding and broader discussions with industry. This is used to estimate the 
average number of cores per server based on segment and region.  

The lifetime of non-AI servers is assumed to be  5.7 years, based on Shehabi et al 2024 6 

2.4.1 SERT performance 

SERT test data was obtained from The Green Grid (TGG) server energy efficiency 
database7 (SEED). On a logarithmic scale performance scales linearly with the number 
of cores and over time as shown in Figure 3 . 

 

Figure 3 SERT performance trends by number of CPU cores and year of CPU launch 

 
6 Shehabi, A., Smith, S.J., Hubbard, A., Newkirk, A., Lei, N., Siddik, M.A.B., Holecek, B., Koomey, J., 
Masanet, E., Sartor, D. 2024. 2024 United States Data Center Energy Usage Report. Lawrence Berkeley 
National Laboratory, Berkeley, California. LBNL-2001637 - 
7 https://www.thegreengrid.org/en/resources/library-and-tools/581-TGG%27s-Server-Energy-Efficiency-
Database. Accessed November 2024 
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2.5 AI computational capacity 
AI computational capacity is calculated from the number of AI servers sold and 
performance using the MLPerf benchmark score explained in the next section.  

AI sales data is very limited. Two sources were used: public shipment estimates from 
Techinsights8 for GPUs and FMI estimates of sales of AI servers (not GPUs). The 
Techinsights data provides global shipments and importantly includes Google GPUs. 
These GPUs are made according to Google design and exclusively for Google use and 
shipped in high volume. The FMI data is used to estimate the regional breakdown for AI 
computational capacity. 

GPU shipments were estimated to have increased from 0.55 million in 2019 to 6.3 
million in 2023 with a very sharp increase from 2020. We extrapolated future sales 
based on current trends. This results in the total performance of GPUs (normalised 
against the Nvidia H100 SXM 80GB GPU) to increase rapidly (as shown in Figure 4). This 
shows N. America dominates the market, however, this might be underestimating the 
expected growth in Asia, particularly China which Chinese DIIRI (2023)9 forecasts will 
have (31%) of global computational capacity in 2025, close to USA (36%). Conversely, 
Patel et al (2024)10 , estimates that 70% of all AI computational capacity will be located 
in USA alone. Both reports predict much lower capacity in Europe in part due to high 
electricity costs and regulatory barriers. Geopolitics also restrict global access to 
current state of the art GPUs as reported by Reuters (2025)11, but this could eventually 
be overcome by domestic production in China. 

The lifetime of servers with GPUs is assumed to be four years (Patel & Nishball, 2023)12, 
shorter than for ‘conventional’ servers. It is assumed that operators will plan to 
minimise the TCO13 of the server and maximise revenue which increases the rate of 
server replacement because energy consumption is high, and efficiency is improving 

 
8  Balossier, E (2024) Google is the third-largest designer of datacenter processors as of 2023—without selling a 
single chip, Techinsights Accessed: August 2024 
https://library.techinsights.com/search/wp-asset/1955818#code=DCC-2405-
806&subscriptionId=null&channelId=null 
9 中国通服数字基建产业研究院 (2023) 中国数据中心产业发展白皮书 (2023) 
China Communications Services Digital Infrastructure Industry Research Institute (2023) White Paper on 
the Development of China's Data Center Industry (2023) Accessed November 2024 
https://aimg8.dlssyht.cn/u/551001/ueditor/file/276/551001/1684888884683143.pdf 
10 Patel, D. Nishball, D. Eliahou Ontiveros, J (2024) AI Datacenter Energy Dilemma – Race for AI Datacenter 
Space  SemiAnalysis Accessed August 2024  
https://semianalysis.com/2024/03/13/ai-datacenter-energy-dilemma-race/ 
11 Freifeld, K (2025) US tightens its grip on AI chip flows across the globe Reuters. Accessed January 2025 
https://www.reuters.com/technology/artificial-intelligence/us-tightens-its-grip-ai-chip-flows-across-
globe-2025-01-13/ 
12 Patel, D. Nishball D (2023) GPU Cloud Economics Explained – The Hidden Truth SemiAnalysis Accessed 
August 2024  
https://semianalysis.com/2023/12/04/gpu-cloud-economics-explained-the/ 
13 Total Cost of Ownership 
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rapidly. Furthermore, when power availability is limited and efficiency increases rapidly, 
faster replacement rates will increase available computing capacity at the same energy 
cost and allow them to sell the compute or services at lower cost than competitors, 
incentivising shorter lifetimes.  Shehabi et al 2024 assumes a 5.7 year lifetime, and this 
substantially increases the installed base relative to our assumption of four years.. 

 Figure 4 shows the estimated global GPU computational capacity by year and by region. 

Figure 4 Modelled global GPU (AI) computational capacity 

 

2.5.1 AI performance 

There is no direct equivalent to SERT for AI performance and efficiency. MLPerf is used 
as this is the closest analogue that also publishes publicly available data14.  MLPerf is a 
suite of standardized machine learning benchmarks developed by the MLCommons 
consortium. Unlike SERT, which focuses on general server efficiency, MLPerf 
specifically measures machine learning training and inference performance across 
different hardware platforms and frameworks. 

MLPerf provides standardized performance metrics for AI workloads (eg llama, gpt, 
resnet), measuring both throughput and time-to-train a range of representative machine 

 
14 https://mlcommons.org/benchmarks/inference-datacenter/ Accessed December 2024 

https://mlcommons.org/benchmarks/inference-datacenter/
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learning tasks including image classification, natural language processing, and 
recommendation systems.  

However, MLPerf is relatively new compared to SERT, data are more limited and 
dominated by one manufacturer of accelerators, Nvidia GPUs. The benchmarks also 
evolve more frequently to keep pace with rapid developments in AI, including 
improvements in software efficiency, which can complicate long-term trend analysis. 
MLPerf also does not combine the different workloads in a similar way to SERT, and 
there can be wide divergence between workloads.  

The analysis of MLPerf was based on the inference workloads with the most testing 
results, preferably with power testing. These were then normalised to the average 
performance of the NVidia H100 SXM 80GB GPU for which the most tests have been 
performed. Training workloads were not used because there was no power data 
available to analyse efficiency. Furthermore, training is performed on large clusters 
which makes the results more sensitive to other factors, such as network bandwidth 
and topology. The variation of GPU chips performance over time is shown in Figure 5 
(own analysis). 

The data shows an exponential increase in performance per GPU, particularly for the 
llama2 workload. However, the resnet workload shows less improvement 
comparatively. This is largely ignored because it is becoming less important than 
transformer models which are used for LLMs15. The relatively high performance 2020 
GPU is also ignored because a highly performant and efficient GPU was launched but 
not widely sold. There are also very few datapoints for Google GPUs but we assume they 
must have competitive performance and efficiency. 

 
15 Large Language Models 
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Figure 5 GPU normalised performance over time (own analysis) 

2.6 Energy Consumption 

Power demand at the expected utilisation is calculated using: 

𝑝𝑜𝑤𝑒𝑟𝑙𝑜𝑎𝑑% =
𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒

𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦
∗

1 + 𝑖𝑑𝑙𝑒 𝑟𝑎𝑡𝑖𝑜 ∗ 𝑢𝑡𝑖𝑙_𝑡𝑎𝑟𝑔𝑒𝑡

1 + 𝑖𝑑𝑙𝑒 𝑟𝑎𝑡𝑖𝑜 ∗ 𝑡𝑒𝑠𝑡𝑖𝑛𝑔 𝑢𝑡𝑖𝑙
 

This is derived from the basic formula efficiency = performance/power with an 
additional linear interpolation to account for the difference between the target 
utilisation and the utilisation at which efficiency was measured, where the 
performance,  efficiency and testing utilisation must all be derived from the same test 
standard. For SERT16 the test utilisation is 55%. It is assumed to be around 70% for 
MLPerf since no utilisation data is available and this is in line with the utilisation 
assumption in Shehabi et al 2024. 

 
16 While SERT does not have any units, this is simply a mathematical ‘trick’ because every worklet has its 
own units which do not add value to the overall metric. It is trivial to multiply by 1W or 1bit to remove the 
units because geometric means are used. The precise units of performance are not important as long as 
they are consistent. 
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Energy consumption is the product of the power and time, calculated for both the high 
and low utilisation levels. 

The utilisation for each DC type is shown in Table 2. 

Table 2 Assumed utilisation for each DC type 

DC type Utilisation mode Utilisation % Time (hr/yr) 
Traditional, small DC High 10% 5840 

Low 5% 2920 
Cloud, large DC High 30% 5840 

Low 15% 2920 
Cloud, Hyperscale DC High 40% 5840 

Low 20% 2920 
AI, hyperscale DC High 80% 5840 

Low 40% 2920 

2.6.1 SERT efficiency and idle ratio 

The efficiency is based on the server CPU launch year and SERT performance. It was not 
possible to derive a single formula that correlates with both year and performance so 
individual formulae were created for each year.  

The efficiency, adjusted to take into account the sales weighting of server performance, 
ie taking into account the increasing proportion of sales of higher core servers, is shown 
in Figure 6. The annual efficiency improvement has been increasing in recent years from 
6-8% in 2020 to around 18-23% in 2023, depending on the data centre type. Coroamă et 
al (2025)17 estimate a similar efficiency value in 2023 but overall find a lower and 
consistent efficiency improvement trend of around 26% for the market dominant dual 
core servers, while identifying the very wide range in efficiency in a given year. Coroamă 
et al (2025)’s analysis shows that sales weighting has a considerable impact on the 
efficiency projections which could introduce further error if the sales data is poor. 

 
17 Coroamă, V C. Dumbravă, O. Hinterholzer, S. Progni, K. Hintemann, R (2025) Energy efficiency of 
servers past and possible future trends. IEA EDNA 
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Figure 6 Modelled  ICT efficiency improvements in TEM 

   

The idle ratio is the ratio of the max power (determined at 100% utilisation) and power 
at idle.  Based on analysis of the SERT data, the idle ratio does not change over time. 

2.6.2 AI efficiency and idle ratio 

The trend in AI efficiency to date is analysed using the MLPerf inference workload data 
and normalised to the relative performance of an Nvidia H100 GPU (as shown in Figure 
7). Relatively few test results included power measurements. The efficiency does not 
depend on the performance of the GPU because each year few GPUs are launched and 
they all aim to achieve maximum performance and efficiency. The large number of 
results in 2020 include that of the low sales GPU identified previously in the AI 
performance analysis (Section 2.5.1).  As before this is not included in this analysis. 
These data may not include  GPUs sold in China, which are subject to export 
restrictions. 

Based on these data the efficiency improvement is exponential,  as shown in Figure 
7,with about a 10x improvement over the past few years. However, research from 
Tschand et al (2024 preprint)18 analysis finds closer to 1000x efficiency improvement for 

 
18Tschand, A. Tejusve Raghunath Rajan, A. Idgunji, S. Ghosh, A. Holleman, J. Kiraly, C. Ambalkar, P. Borkar, 
R. Chukka, R. Cockrell, T. Curtis, O. Fursin, G. Hodak, M. Kassa, H. Lokhmotov, A. Miskovic, D. Pan, Y. 
Prasad Manmathan, M. Raymond, L. St. John, T. Suresh, A. Taubitz, R. Zhan, S. Wasson, S. Kanter, D. 



 

 22 

GPU chips  using the same dataset (Figure 8, note log scale on y axis ). This difference 
may be due to the way we have processed the data: as performance is normalised 
against the H100 chip results are excluded if the test is not performed on the H100 and 
the other chip in the launch year. In contrast, Tschand et al (2024 preprint) have 
normalised efficiency to 1 for the earliest test result and the x-axis is the date of the 
benchmark used. This results in a 10-100x magnitude difference in the efficiency 
improvement over the past 3-4 years alone as shown in Figure 8.  

Figure 7 Normalised efficiency of GPUs over time  

 

 

 
Janapa Reddi, V (2024 preprint) MLPerf Power: Benchmarking the Energy Efficiency of Machine Learning 
Systems from µWatts to MWatts for Sustainable AI Arxiv Accessed December 2024 
https://arxiv.org/html/2410.12032v1 
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Figure 8 Tschand et al (2024) DC AI efficiency analysis (log scale on y-axis) 

 

Coroamă et al (2025) compared the efficiency trends using the manufacturer declared 
(theoretical) performance and thermal design power across a number of factors. It is 
inherently difficult to compare the MLPerf benchmarks with theoretical performance 
because many factors could affect real world performance/efficiency such as: software 
optimisation, what calculations are being made and memory bottlenecks. However, if 
we take what appears to be the most important factor, FP16/BF16 tensor efficiency, 
from Coroamă et al (2025) and compare it with the projected year on year annual energy 
for Hyperscale Cloud AI using the ML Perf analysis we see that they are close. While this 
could be coincidental, it provides additional confidence in the analysis. 

Based on Shehabi et al 2024 we have assumed the Idle ratio for AI DCs is 5. 

2.6.3 Storage and networking energy 

Storage and networking energy are calculated as percentage on top of server energy 
and are assumed to be: 

Storage energy + network energy = server energy * 25% 

This is assumed to be unchanged over time. The percentage is also the same for AI 
servers which require very high speed (and high power) networking to link servers 
together for parallel processing during training but also inference workloads for very 
large models. Based on Shehabi et al (2024) storage and networking was approximately 
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35% of server energy in 2014, decreasing to 25% around 2021. The forecasts shows that 
the percentage drops to around 15% in 2028, due to the very high AI energy 
consumption. Modelling storage and networking can be improved using a similar 
approach to the server computational capacity but would require additional data and 
testing.   

2.7 Infrastructure Energy 

The DC infrastructure energy (cooling, power, lights security etc) is calculated from the 
PUE and ICT energy: 

𝐷𝐶 𝐼𝑛𝑓𝑟𝑎𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 𝑒𝑛𝑒𝑟𝑔𝑦 = 𝐼𝐶𝑇 𝑒𝑛𝑒𝑟𝑔𝑦 ∗ (𝑃𝑈𝐸 − 1) 

Where PUE values are segment-specific and time-dependent. 

The PUE data is drawn from multiple sources for each region (see annex A). Where there 
is insufficient data for a region, the average global PUE is used.  

PUE in USA and Europe has been relatively stable for the past few years and is not 
expected to improve, despite the expected introduction regulations setting minimum 
regulations, since the majority of DCs have already achieved the required performance. 
There is continued improvement in Asia and particularly China which had lagged behind 
in the past but recent data centres shows that they are already on par with best in class 
performance (Lanyang Technologies, 2023)19. Figure 9 shows the assumed average 
global PUE for three types of DC based on the data in Annex A. (AI is assumed to be in 
hyperscale DCs and have the same PUE. However, they are also being installed in 
Colo’s where dedicated DC’s are unavailable (eg Europe) and to distribute inferencing 
resources closer to the consumers and the ’edge’.) 

Because the majority of the data are self-reported by hyperscale data centres in their 
sustainability reporting and large data centres in the EU CoC, the PUE data, although 
accurate, is likely to be better than the wider market, ie the less efficient data centres 
are less likely to report their efficiency.  

 
19 兰洋科技 (2023) 数据中心能耗现状和能效水平分析 
Lanyang Technologies (2023) Analysis of current energy consumption and energy efficiency levels in data 
centres Accessed online November 2025  
https://www.blueocean-china.net/faq3/234.html 
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Figure 9 Global data centre average PUE estimate 

 

 

3 Policy modelling 

The model supports analysis of policy interventions through adjustable parameters: 

• Minimum ICT efficiency standards or labels  
• Utilisation requirements  
• Infrastructure efficiency  
• Allocation of compute resources between DC types (accelerating shift away 

from small DCs) 
• PUE improvements to traditional and cloud data centres. 

In addition, it is possible to alter other factors which may be directly or indirectly 
affected by energy efficiency or other ecodesign policies, namely.  

• Computing capacity (affected by increasing utilisation) 
• Server lifetimes (to reduce lifecycle impacts) 
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While it is possible to change all the parameters in the base scenario and policy 
scenario (labelled as Alt scenario), for ease of use a simplified dashboard is available 
(See Annex B).  

This simplified interface does not give full model functionality, for example minimum 
efficiency performance standards would result in a single step change in efficiency, 
while the dashboard can only model a continuous improvement. Depending on the 
policy maker requirements, it is possible to further refine and add functionality to the 
dashboard but this requires additional work and adds complexity.  

4 Results  

4.1 Note on the interpretation of the results 
The model uses the data and assumptions described in the previous section to produce 
projections of energy use, split by DC type and region.  The base scenario projections 
assume that trends in the demand for computing and the changes in efficiency 
continue into the future.  

‘Conventional’ data centre use and technology is well established and understood – 
while they continue to evolve there are reasonable grounds to make projections into the 
future.  The situation is different for AI which is still in its infancy;  the future uptake and 
efficiency of AI is highly uncertain.  

The model does not take into account factors that will limit the growth of data centres in 
general and AI data centres in particular, such as the constraints on the supply of 
chips/servers, the capital to build more data centres or the electricity to supply them 
with energy, all of which are likely to apply.  These economic and practical factors are 
beyond the scope of this modelling but are expected to have a big impact on data centre 
development, particularly for AI data centres.  Studies by other authors (Goldman Sach 
2024 and SemiAnalysis 2024) do consider these constraints; and their projections are  
compared to those from the TEM and discussed in section 5. 

To summarise, these values are not predictions, they illustrate a hypothetical case in a 
fictional world where current trends in the growth of DC use for AI can continue without 
practical restraints. 

The model has been intentionally structured so that additional, newer and better data 
can be integrated with relative simplicity. This will enable policymakers to create more 
accurate predictions for the market segments they are interested in and subsequently 
estimate the potential impacts of policies.  
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4.2 Overall projections 
 The results (Figure 10) show that from 2030 energy is entirely dominated by AI. This is 
due to the projected massive growth of AI compute capacity20 which is forecast through 
a simple extrapolation of current trends. This outpaces the expected but highly 
uncertain improvements in efficiency. If this growth were to take place this 
consumption would have enormous impacts on the energy markets. The model does 
not account for power or budget constraints and other financial, supply or demand 
constraints which would set an upper limit on energy consumption.  Because of this, 
Figure 11 and subsequent figures show a detailed view with the y-axis truncated at 
1000 TWh to show the other trends.  

Figure 10 DC energy consumption by DC and compute type 

 

 

Non-AI compute energy is also expected to triple by 2034 after relatively stable energy 
consumption from 2015 to 2020. Most of this increase is in hyperscale DCs, with use of 
small DCs declining over time.  

 
20 as described above, a combination of number of chips and their efficiency 
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Figure 11 DC energy consumption by DC and compute type (detail view) 

 

4.2.1 ICT vs DC infrastructure  

Figure 12 shows that DC infrastructure21 still has a significant contribution to the overall 
energy consumption when AI is removed. In particular, the medium/large DCs make a 
relatively large contribution to overall energy use and have scope to be reduced further 
by ambitious policy. 

 
21 ICT infrastructure is network and storage, DC infrastructure is non ICT energy use eg cooling equipment  
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Figure 12 non-AI ICT and DC infrastructure energy consumption 

 

Infrastructure energy use is less significant for AI. 

4.2.2 Energy consumption by region 

The projection for non AI (Figure 13) and AI (Figure 14) is that North American DCs 
consume the most electricity, followed by Europe and then Asia . South America and 
the Middle East and Africa have extremely low energy consumption. This trend changes 
very little over time. However, the growth is extrapolated from existing trends and does 
not account for relative economic growth, industrial policy or other geopolitical factors 
that could affect this greatly. For example, there is substantial investment in AI in the 
Middle East (Benito, 2024)22 and attempts to attract and grow AI capacity there 
(Newman et al, 2024)23. China is also building chip manufacturing and AI capability 
which could result in much more rapid growth there. 

 
22 Benito, A (2024) Saudi Arabia launches $100 Billion AI initiative to lead in global tech CIO 
https://www.cio.com/article/3602900/saudi-arabia-launches-100-billion-ai-initiative-to-lead-in-global-
tech.html  
23 Newman, M. Bergen, M. Solon, O. (2024) Race for AI supremacy in Middle East is measured in data 
centres 
https://www.bloomberg.com/news/articles/2024-04-11/race-for-ai-supremacy-in-middle-east-is-
measured-in-data-centers 
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Figure 13 non-AI energy consumption by region 

 

Figure 14 AI energy consumption by region 
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5 Comparisons with other projections 
To validate the Total Energy Model (TEM) results and understand its limitations, we 
compared our projections with those from four recent studies that forecast data centre 
energy consumption. These studies were selected because they represent different 
methodological approaches and provide detailed projections through 2030, allowing for 
meaningful comparison with our model. They are: 

1. Andrae (2020): Uses data traffic-based methodology 
2. Goldman Sachs (2024): Employs financial/market-based constraints 
3. SemiAnalysis (2024): Utilises detailed technical analysis and power supply 

constraints 
4. LBNL (2024): Uses a hybrid approach 

Since the TEM base case is unconstrained, the energy consumption is expected to be 
significantly higher than the other projections.  

5.1 Andrae, 2020 
Andrae, A.S.G. (2020)24 estimated future electricity consumption based on the 
estimated data demand, and the energy required per unit of data supplied. Two 
scenarios were presented, an expected case and best case as shown in Figure 15. 

Figure 15 Electricity usage (TWh) of Data Centers 2020-2030 Source: Andrae, 2020 

 

 

 
24 Andrae, A.S.G. (2020). New perspectives on internet electricity use in 2030. Engineering and Applied 
Science Letters 3, 14. 
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This is a relatively old paper and published before the widespread availability and 
uptake of AI, particularly LLMs such as ChatGPT and these estimates do not explicitly 
account for AI.  Table 3 compares these estimates with TEM projections.  

Table 3 Comparison of Andrae and TEM 2023 and 2030 energy estimates 

Model Energy use (TWh)  
2023 2030 

  expected case best case expected case best case 

Andrae (2020) 375 200 974 366 

TEM 4 323 - 2510 - 

 

Comparing the estimated energy consumption the TEM estimate in 2023 is between the 
expected and base case but in 2030 the TEM is much higher (by more than a factor of 
two) than the expected case.  

The data demand for AI servers undertaking computations is very high, especially for 
training but also when inferencing. However, the output data for the most common use, 
chatbots, is very low since it is mostly text. We are not aware of any research that has 
tried to quantify this data demand (or how it should be quantified) and therefore it is not 
possible to interpret the data demand used and so to adjust Andrae’s estimates for AI.  

5.2 Goldman Sachs, 2024 
This report25 was published in April 2024.  The authors' projections for energy use are 
shown in Figure 16. 

 
25   Davenport, C. Singer, B. Mehta, N. Lee, B. Mackay, J. Modak, A. Corbett, B. Miller, J. Hari, T. Ritchie, J. 
Delaney, M. Revich, J. Jaiya, J. Venugopal, V. Cash, N and Halferty, O. (2024) Generational growth, AI data 
centres and the coming US power demand surge, Goldman Sachs Accessed January 2025 
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Figure 16 Goldman Sachs projections of data centre energy use 

These are compared with TEM projections in Table 4 and Table 5. The energy 
consumption in the two models shows similar historical trends, approx. 200TWh in 
2015 but has diverged in 2023, energy consumption is higher in the Goldman Sachs (GS) 
model. In 2030 the TEM projection is much higher than even the GS bull case with the 
difference being largely a much high projection in the TEM for AI energy use. 

Table 4 Goldman Sachs and TEM  estimates of data centre energy use in 2023 compared 
 

Base case 

  AI (TWh) Non-AI 
(TWh) 

Total 
(TWh) 

Goldman 
Sachs 

75 350 425 

TEM 4 56 267 323 
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Table 5 Goldman Sachs and TEM estimates of data centre energy use in 2030 compared 
 

Base case Bear case Bull case 

  AI (TWh) Non-AI (TWh) Total (TWh) Total (TWh) Total (TWh) 

Goldman 
Sachs 

500 650 1150 820 1400 

TEM 4 2170 354 2510 - - 

 

The modelling approach is different to that of TEM, Andrae, Shehabi et al in that it uses 
financial modelling as well as technical data.  

GS state that they consider two scenarios: 

• server-supply driven, that is the supply of compute capacity either due to 
manufacturing or budget limits is the predominant constraint  

• demand for computing power is the main driver. 

GS applied both a server supply driven forecast and a compute demand driven forecast, 
with a heavier weight applied towards the supply-driven methodology. 

Server capacity is unconstrained in the TEM, while Goldman Sachs (Davenport et al 
2024) believe it to be the major factor limiting growth. The supply side growth (and 
constraint) is quantified in terms of revenue, not number or power of servers so 
comparing this to computing capacity would take additional analysis that is not in 
scope for this project.  

In addition, there are some differences in inputs and assumptions between the GS and 
TEM models.GS expect data centre energy use excluding AI to rise due to an increase in 
workload only partially offset by modest power efficiency gains in cloud/hyperscale. 
Their predictions are more sensitive to this second factor. They note that efficiency 
gains slowed considerably in 2022 and 2023 but expect them to pick up slightly. Their 
predictions are shown in Figure 17. 



 

 35 

 

Figure 17 Goldman Sachs data and predictions of cloud/hyperscale data centre efficiency gains 

The efficiency gains are much lower than identified in our analysis of SEED as shown 
previously in Figure 6.  These take into account the efficiency gains from using CPUs 
with more cores and continued improvements in process node technology and chip 
packaging. Based on our estimates efficiency has been improving faster, at 
approximately 17% annually for hyperscale data centres vs 2% in the Goldman Sachs 
model. SEED is based on efficiency testing of only three configurations which may not 
be representative of real world configurations that could have lower efficiency but this 
difference in configuration cannot account for such a large difference. Overall, this use 
of SEED data  in the TEM model may make it more realistic than other models.  However 
the SERT data needs ground truthing with real measurements of energy use from 
operational data centres to validate it. 

On the other hand, GS have present improvement in AI efficiency in terms of theoretical 
performance (FLOPS) as shown in Figure 18. We consider this to be less realistic than 
testing with MLPerf which includes limits from factors such as software architecture, 
network speed, memory bandwidth and cooling. Therefore, the FLOPS measurements 
will overestimate the efficiency gains made. However, if the GS model is solely supply 
constrained, the reduced efficiency would result in lower overall compute capacity 
rather than affecting energy consumed. It is not known if this would have changed the 
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weightings of the scenarios used to increase total compute capacity and therefore 
energy consumed. 

 

Figure 18 Data presented by Goldman Sachs on changes in power demand and computing speed for different 
generations of GPUs 

 

5.3 SemiAnalysis, 2024 
SemiAnalysis (2024) applied a detailed methodology which combined data on: 

• Current conventional and AI data centre capacity (MW) including analysis of satellite 
imagery of buildings and new construction 

• Projections of future conventional and AI data centre capacity based on demand for 
compute capacity constrained by: 

o Shipments of new chips 
o Constraints building and providing electricity to new data centres 

• Chip and server energy use 
• Server utilisation 
• PUE 

The data used were a combination of published and gathered by the organisation. A 
customised model was used to generate the energy projections. SemiAnalysis 
maintains a commercial product updating and selling their Data Center Industry 
Model26.  

Similar to Goldman Sachs, the authors have applied constraints to the supply of GPUs, 
but also considered how building and electricity supply could constrain energy 
consumption. The methodology is more detailed and seems to be more robust than 

 
26 https://semianalysis.com/datacenter-industry-model/ 
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Goldman Sachs but there is insufficient detail to be certain. The resulting projections 
are shown in Figure 19. 

 

Figure 19 SemiAnalysis projections of data centre energy use 

The results are compared with TEM projections in Table 6. 

Table 6 Comparison of SemiAnalysis and TEM 2023 and 2030 energy projections 

 2023 2030 
 

Base case Base case Limited AI 
impact 

Accelerated 
case 

  Total (TWh) Total (TWh) Total (TWh) Total (TWh) 

SemiAnalysis 450 1 500 500 2 250 

TEM 4 323 2 510 - - 

 

The SemiAnalysis estimate of energy consumption in 2023 is significantly higher than 
that from the TEM. In 2030 the projected base energy consumption from the 
SemiAnalysis model is significantly less than TEM due to constrained supply (as for GS). 
However, the Accelerated case and TEM are similar suggesting the unconstrained TEM 
represents a realistic upper limit to energy consumption.   
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SemiAnalysis present their estimates of compute capacity in FLOPS.  As shown in 
Figure 20, they expect capacity growth to peak at 75% Quarter on Quarter (QoQ)(937% 
yr on yr if maintained over four quarters) and drop to approximately 25% in 4Q25 (244% 
yr on yr). The TEM model year on year capacity growth, based on the MLPerf 
benchmarked capacity is shown in Figure 21. 283% year on year is equivalent to 30% 
QoQ but, taking into account the different measurement approaches, the projected 
capacity growth from TEM is higher than that assumed by SemiAnlysis by 4Q25.  

Additional analysis may be able to establish a correlation between FLOPS and MLPerf 
capacities across different hardware architectures and software that could be used as 
an adjustment factor so that values from the two measurements could be compared. 
This is outside the scope of this study.  

Figure 20 AI compute capacity (in FLOPS) Growth %QoQ. Source SemiAnalysis (2024) 
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Figure 21 TEM estimates of yr on yr GPU compute capacity growth  

 

 

5.4 LBNL 2024 
The LBNL model27 is a bottom-up model built on hardware equipment shipment (server, 
storage and networking). The server power consumption is then calculated from SEED 
values with ground truth testing. The power per server depends on the number of server 
sockets and is applied to all types of data centre. The networking power depends on 
port speed, with higher power for the growing market for very high speed connections. 
PUE is estimated based on the cooling architecture which is then associated with 
different types of data centre.  

LBNL and TEM projections of data centre energy use in the USA and North America 
(USA, Canada and Mexico) are shown in Figure 22 and Figure 23. The server energy 
consumption shows similar trends. However, the growth trend in TEM lags behind the 
LBNL model, 50TWh is reached in 2019 and 100TWh in 2023, compared with 2021 and 
2024 from the TEM. It would be expected that energy consumption from TEM to be 
higher given the wider geographic coverage (including Canada and Mexico as well as the 
USA).  

 
27 Shehabi et al (2024) 
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Figure 22 USA Server electricity consumption Source: LBNL, 2024 

 

Figure 23 TEM North America server energy consumption 
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Some similarities between the results of LBNL and from the TEM is expected since the 
same datasets (SEED) are used and some assumptions are taken directly from LBNL 
model are used in the  TEM. However, there are some notable differences in the inputs: 

• Different server powers and efficiencies are assumed for different DC types in 
TEM. 

• The lifetime of the AI GPUs is much lower in TEM, reducing the installed base. 
• The estimated PUE in TEM for small DC is worse (higher) while that in cloud 

hyperscale PUE is better. However the differences are relatively small and so the 
impact will be too. 

• The estimated PUE for AI hyperscale is slightly better in the LBNL model.  

It is difficult to compare TEM compute capacity/efficiency with the LBNL 
shipment/power estimates as they are very different parameters.  

5.5 Summary of comparisons of estimates 
The energy projections from the different models are compared in Table 7 and Figure 24. 
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Table 7 Summary of model estimates of data centre energy use 

 2023 2030 
 

Base case Base case Low High 

Andrae, 2020 375 974 366  

Goldman 
Sachs, 2024 

425 1 150 820 1 400 

SemiAnalysis, 
2024 

450 1 500 500 2 250 

TEM 4 323 2 510 - - 

 

 

Figure 24 Comparison of model energy projections 

6 Sensitivity analysis 
From the calculations and comparisons, it is clear that the largest areas of sensitivity 
are the compute capacity (unconstrained and likely too high) and efficiency curves 
(potentially too pessimistic), particularly for AI. This is because they are modelled on 
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exponential growth. Comparing the various models28 (Table 7), the consensus would 
suggest that the projected energy consumption from the TEM is too high in 2030 (and 
beyond), due to the AI component. The uncertainty analysis will therefore focus on 
changes in AI compute capacity and efficiency and try to integrate the inputs from other 
models. These changes are applied from 2024 onwards. 

In addition, the TEM projections of 2023 energy use seems low compared to other 
models. This may be due to assumptions on AI server lifetimes so this will also be 
investigated. 

Table 8 shows the inputs varied in the sensitivity analysis. 

Table 8 Inputs to sensitivity analysis 

Parameter ICT yr on yr % 
efficiency 
improvement 

AI yr on yr % 
efficiency 
improvement 

AI yr on yr %  
capacity 
growth 

AI lifetime 
yr 

Base value 18-23% 70% 283% 4.0 
Variant used 
in sensitivity 
analysis 

3% 200% 150% 5.7 

 

6.1 Results 
shows the projected energy consumption in 2023 and 2030 using the base assumptions 
and with the value of the parameter in the sensitivity analysis  

Table 9 shows the projected energy consumption in 2023 and 2030 using the base 
assumptions and with the value of the parameter in the sensitivity analysis  

Table 9 Projected energy consumption in base and sensitivity analyses 

 2023 base 
Energy (TWh) 

2023 Energy 
with variant 
(TWh) 

2030 base 
Energy (TWh) 

2030 Energy 
with variant 
(TWh) 

Lower ICT 
efficiency 
improvement 

323 323 2 510 2 900 

Higher AI eff 
improvement 

323 323 2 510 1 200 

Lower AI 
capacity 

growth 

323 323 2 510 400 

Longer AI 
lifetime  

323 350 2 510 3 600 

 
28 The projections from LBNL are not included in the table as they only extend to 2028. 
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 2023 base 
Energy (TWh) 

2023 Energy 
with variant 
(TWh) 

2030 base 
Energy (TWh) 

2030 Energy 
with variant 
(TWh) 

Combined 
scenario (all 

of above) 

323 350 2 510 750 

 

Figure 25 shows the alternative scenarios over time. 

Figure 25 Energy consumption from sensitivity analysis 

 

Figure 26 shows a detailed view of the same data. 
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Figure 26 Energy consumption from sensitivity analysis (detailed view) 

 

6.2 Discussion of results 
Figure 27shows the relative sensitivity of the projected energy to each changed 
parameter. It is clear that the ICT efficiency has a low sensitivity because non-AI energy 
consumption is a small proportion of the total, while the AI efficiency and capacity have 
the largest impacts.  
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Figure 27 Sensitivity of projected energy to each parameter 

Considering the effect of each variant in turn: 

Reducing the annual increase in non-AI ICT efficiency improvement from 18 to 23% 
causes the energy consumption to increase by 390TWh in 2030. This is double the non-
AI energy in the base case in this year but a relatively small proportion of total energy 
since that is mostly AI related. 

Changes to the AI lifetime has a linear impact on the energy consumption: an increase 
of approximately 50% from 4yr to 5.7 yr increases the energy 45% for every year 
modelled, rather than compounding over time.  

The AI efficiency yr on yr improvement could be as high as 1000% per year based on 
Tschand et al (2024 preprint). A more moderate 200% is used for the sensitivity analysis. 
This has the second largest impact on the energy consumption by 2030, reducing the 
energy consumption by 54% to a more moderate figure, although there is still 
substantial growth in energy use from 2023.  

Reducing the AI capacity yr on yr growth to 150% has the single largest impact on the 
energy consumption, reducing energy by 84% relative to the base case in 2030, similar 
in scale to the AI efficiency improvement.  

The combination scenario combines the effect of all the sensitivity changes results in 
projected energy consumption of 808 TWh in 2030. The combination of reduced 
capacity growth and improved efficiency of AI results in a huge reduction of energy. This 
is slightly offset by the reduced efficiency of the non-AI ICT efficiency.  
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Comparing the base  and alternative scenario suggests that the energy consumption of 
data centres lies within a very wide range of between 800TWh to 2 400 TWh in 2030.  

7 Conclusions 
The purpose of the project was to create a new model to model data centre energy 
efficiency policies, and project the long term energy consumption.  

7.1 Policy modelling 
The TEM provides a framework on which data centre policies can be modelled. It 
provides a relatively simple dashboard through which basic policy impacts can be 
modelled, including changes to server efficiency, market growth rate, lifetimes, 
utilisation rates and shifting traditional server loads to cloud. Having this ability is very 
important for assessing policy impacts and cost-benefits analysis.  

However, these must be compared against a base case. Long term projections of data 
centre energy consumption, especially AI, is very hard to do with confidence and 
accuracy due to the highly uncertain market. In the absence of reliable projections, 
policy makers must use the model wisely, this may include assessing the credibility and 
updating the inputs, more extensive sensitivity analysis and quantifying ranges of energy 
savings and consumptions.  

For AI, it may be the case that the sector is too immature and projections are too 
uncertain for some types of policies. However, non-AI servers can be more accurately 
modelled and policies already exist. In any case the model is only a tool and it is the 
responsibility of the policy maker to use it with full knowledge of the limitations, in 
particular the evidence base available.  

7.2 Energy consumption projections.  
Projections from the TEM seem to give results in the short term which are comparable 
with those from other models which helps to validate the modelling approach. The 
figures in the medium term are unrealistically high due to unconstrained in AI energy 
use.  In reality economic and supply limits will restrict this growth. 

It is extremely difficult to predict the growth of AI capacity, efficiency and energy use. 
Without long term market forecasts, simple extrapolation of short-term forecasts 
similar to those used for other products produce wildly unrealistic results. Assuming no 
change in capacity or efficiency is equally unrealistic. This is mostly due to the rapid 
growth and developments in AI technology at this stage of immaturity in the AI industry 
coupled with geopolitical conditions. 

However, as the AI market matures the quality of projections of parameters data will 
improve, and the model could  become more accurate. The model structure should 



 

 48 

make it relatively easy to update as new data becomes available, for example through 
the requirement for data centre reporting  under the EU Energy Efficiency Directive29. 
Another example is the new model from EpochAI, GATE30, published in March 2025 that 
projects AI computational capacity and efficiency to 2045 (but not energy) using 
economic modelling, showing how frequently and rapidly new data is becoming 
available.  

Financial/economic models (such as those used by Goldman Sachs and SemiAnalysis) 
seem to give the most reasonable results and are likely the best way to project future 
energy consumption in the short term because they are  able to take into account 
market constraints, such as the supply of chips, or access to capital or electricity. 
However, financial models need extensive research and knowledge and existing models 
are not suitable for policy modelling or easily accessible to policy makers.  

In the short term, we need to find a way to integrate the results of financial modelling in 
a non-arbitrary way into the model, that is verifying their assumptions and not just 
adjusting our inputs to get the outputs to match.  The sensitivity analysis shows the 
range of values that could be expected from using the inputs from other models and 
provides upper and lower bounds to future energy consumption which are in line with 
other projections. 

 

 
29 Article 12 of the recast Energy Efficiency Directive, EU/2023/1791 and COMMISSION DELEGATED 
REGULATION (EU) 2024/1364 of  
30 https://epoch.ai/gate  

https://epoch.ai/gate
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Annex A PUE data sources 
Cloudscene (2024) Market Profile Australia. Accessed Nov 2024    
https://cloudscene.com/market/data-centers-in-Australia/all 
Cloudscene (2024) Market Profile Canada. Accessed Nov 2024    
https://cloudscene.com/market/data-centers-in-Canada/all 
Cloudscene (2024) Market Profile France. Accessed Nov 2024    
https://cloudscene.com/market/data-centers-in-France/all 
Cloudscene (2024) Market Profile Germany. Accessed Nov 2024    
https://cloudscene.com/market/data-centers-in-Germany/all 
Cloudscene (2024) Market Profile India. Accessed Nov 2024    
https://cloudscene.com/market/data-centers-in-India/all 
Cloudscene (2024) Market Profile Italy. Accessed Nov 2024    
https://cloudscene.com/market/data-centers-in-Italy/all 
Cloudscene (2024) Market Profile Japan. Accessed Nov 2024    
https://cloudscene.com/market/data-centers-in-Japan/all 
Cloudscene (2024) Market Profile Netherlands. Accessed Nov 2024    
https://cloudscene.com/market/data-centers-in-Netherlands/all 
Cloudscene (2024) Market Profile Singapore. Accessed Nov 2024    
https://cloudscene.com/market/data-centers-in-Singapore/all 
Cloudscene (2024) Market Profile South-Africa. Accessed Nov 2024    
https://cloudscene.com/market/data-centers-in-South-Africa/all 
Cloudscene (2024) Market Profile Spain. Accessed Nov 2024    
https://cloudscene.com/market/data-centers-in-Spain/all 
Cloudscene (2024) Market Profile Sweden. Accessed Nov 2024    
https://cloudscene.com/market/data-centers-in-Sweden/all 
Cloudscene (2024) Market Profile United-kingdom. Accessed Nov 2024    
https://cloudscene.com/market/data-centers-in-United-kingdom/all 
Cloudscene (2024) Market Profile USA. Accessed Nov 2024    
https://cloudscene.com/market/data-centers-in-USA/all 

中国通服数字基建产业研究院 (2023) 中国数据中心产业发展白皮书 (2023)  
China Communications Services Digital Infrastructure Industry Research Institute (2023) 
White Paper on the Development of China's Data Center Industry (2023). Accessed Nov 2024    
https://aimg8.dlssyht.cn/u/551001/ueditor/file/276/551001/1684888884683143.pdf 

兰洋科技 (2023) 数据中心能耗现状和能效水平分析  
Lanyang Technologies (2023) Analysis of current energy consumption and energy efficiency 
levels in data centres. Accessed  ov 2024    
https://www.blueocean-china.net/faq3/234.html 
Economic Times of India (2024) Data centres are wary of sustainability push in govt’s AI 
mission GPU tender. Accessed Nov 2024    
https://economictimes.indiatimes.com/tech/technology/sustainability-push-in-gpu-tender-
worries-data-centres/articleshow/114053718.cms?from=mdr 
NTT (2024) Environment Data. Accessed Nov 2024    
https://www.nttdata.com/global/en/about-us/sustainability/esg-data/environment-data 
Facebook (2020) 2020 Sustainability Report. Accessed Nov 2024    
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sustainability.fb.com/sustainabilityreport2020 
Meta (2024) Sustainability Report. Accessed Nov 2024    
https://sustainability.atmeta.com/2024-sustainability-report/ 
Google (2024) Google data center PUE performance. Accessed Nov 2024    
https://datacenters.google/efficiency/ 
Walsh, N (2022) How Microsoft measures datacenter water and energy use to improve Azure 
Cloud sustainability. Microsoft. Accessed Nov 2024    
https://azure.microsoft.com/en-us/blog/how-microsoft-measures-datacenter-water-and-
energy-use-to-improve-azure-cloud-sustainability/ 1/4 
Uptime Institute (2024) Uptime Institute Global Data Center Survey 2024 Executive 
Summary. Accessed Nov 2024   
 https://uptimeinstitute.com/resources/research-and-reports/uptime-institute-global-data-
center-survey-results-2024 
Supermicro (2022) Data centers & the environment 2021 report on the state of the green data 
center. Accessed Nov 2024    
https://www.supermicro.com/white_paper/DataCenters_and_theEnvironmentFeb2021.pdf 
EU Code of Conduct for data centres (unpublished). Accessed Nov 2024  
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Annex B Model Dashboard 
 

Pivot table and chart showing 
projected energy consumption. 
(Fields can be changed) 

Input parameters for 
alternative scenario 

Input values for 
reference 
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