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Executive summary 
Due to current trends in computing, the data stored and processed in data centers (DCs) 
will continue to grow substantially. These trends include cloud computing, video streaming, 
the Internet-of-Things (IoT), and in particular artificial intelligence (AI) and machine learning 
(ML). Mitigating the growing demand, efficiency gains are able to partly offset it and limit the 
growth of data center energy consumption. 

As servers are the main devices responsible for electricity demand in data centers, their 
energy efficiency is particularly relevant for both the current status and future 
developments. For several reasons, however, it is notoriously difficult to assess, e.g.: 
miscellaneous types of hardware and computing workloads, lack of standardized 
methodologies and assumptions, consistent system boundaries, technological dependencies 
with other physical and software components, and the dynamic nature of the data center 
domain and rapid innovation cycles. 

The main objective of this study is thus to provide insights into the development of server 
energy efficiency over the past decade. In order to do so, it first distinguishes three types of 
devices: general purpose (sometimes also called “volume servers”) servers, GPU- and TPU-
based accelerated computing servers deployed in AI and high-performance computing (HPC), 
and application-specific integrated circuit (ASIC) servers typically deployed in cryptocurrency 
mining.  

For each of these main categories of servers, one or two efficiency metrics are deployed as 
follows: server-side Java operations per second per Watt [SSJ_OP/s/W] and the widely used 
SERT 2 efficiency metric for general purpose servers, gigaflops per second per Watt [GFLOPs/W] 
for accelerated computing, and Terahashes per second per Watt [TH/s/W] for ASICs. Due to 
their specific characteristics, general purpose servers were further divided into one-chip, dual-
chip and multiple-chip servers. 

The analysis examines the energy efficiency development of servers (or of the chips 
themselves, where no server data is available) over the last decade in each of these 
categories and using the corresponding metric(s). To this end, data was gathered on both 
performance and the power consumption for all categories. For general purpose servers, the 
data sources were two large databases with hundreds of servers each, which benchmark the 
SSJ_OP and the SERT 2 metrics, respectively. The first one is a performance metric that needs to 
be related to power consumption, while the second is an efficiency metric. For GPUs/TPUs and 
ASICs no such databases exist, and the data was gathered from producer datasheets and third-
party sources. The analysis was complemented by literature research and, for the future trends 
in particular, by interviews with key experts. 

The results show a compound annual growth rate for efficiency of 26% for general purpose 
servers, 49% for accelerated computing chips (for FP16/BF16 data representations), and 
47% for ASICs. Representative for all the categories and metrics analyzed within the study, 
Figure ES 1 shows the efficiency development of the (unitless) SERT 2 efficiency for general 
purpose servers with more than two CPUs (left) and of the FP16/BF16 efficiency [GFLOPs/Watt] 
in GPUs and TPUs (right).  
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Figure ES 1 Development of the SERT 2 efficiency for general purpose servers with more than two CPUs (left) and of 
the FP16/BF16 efficiency [GFLOPs/Watt] in GPUs and TPUs (right). Both graphs show the development of the yearly 
mean raw (blue) and smoothened (orange) as well as the individual values (gray dots). 

For each category and metric, the study also presents the development of performance 
and power consumption. This is not applicable to the SERT 2 metric for general purpose 
servers, which is directly an (unitless) efficiency metric. For the other categories, efficiency is 
derived in a third step by dividing performance through power consumption. Performance has 
generally evolved more rapidly than efficiency, partly explained by the also growing average 
power consumption in all categories. 

Across all hardware types, the main efficiency driver was the ongoing miniaturization of 
chips circuits, followed by faster, low-latency and task-focused memory. While also 
important in terms of total power consumption, other efficiency factors such as more efficient 
power supply units and voltage conversion or the beginning uptake of liquid cooling played a 
less significant part. For accelerated computing, however, a key role was also played by novel 
architectures tailored to the needs of machine learning.  

For the near future (i.e., by 2030), these trends are expected to continue. There is still 
improvement potential for all the major as well as the minor efficiency drivers, and no new 
radically different paradigms could be identified. Correspondingly, and assuming the 
improvements in efficiency will proceed with the same average growth rate (26% per year in 
SERT 2 over all systems), the SERT 2 efficiency could reach a value of around 200 in 2030. 
Beyond five years into the future, the uncertainties become too high to allow for rigorous 
projections.       
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1 Introduction 
Published estimates of the energy consumption of data centers (DCs) for 2020 diverge by a 
factor of six, from around 200 TWh/year (Masanet et al. 2020; Malmodin et al. 2024) to nearly 
1,200 TWh (Belkhir and Elmeligi 2018; The Shift Project 2019), with more balanced views placing 
this consumption around 375 TWh/year (Hintemann and Hinterholzer 2019) in 2018, when using 
a wider definition of data centers (e.g. including small server rooms and crypto mining). For 
near-term projections, the uncertainty grows quickly, with 2030 scenarios diverging by a factor 
of 40 (Bremer et al. 2023; Kamiya and Coroamă 2025). These wide-ranging and inconsistent 
estimates are a source of misunderstanding for the public and pose major challenges for 
thoughtful policymaking. 

Given trends such as cloud computing, artificial intelligence (AI) and machine learning (ML), 
video streaming and the Internet-of-Things (IoT), the data stored and processed in DCs will keep 
growing at a substantial pace. Until a few years ago, various types of efficiency gains could 
largely mitigate this growth. Consequently, global DC energy consumption grew only 
moderately. Since about 2017-2018, however, efficiency gains could no longer keep up with the 
increasing demand, and the global DC energy consumption is again on the rise. The estimated 
total data center electricity use of 60 of the largest operators has doubled between 2018 and 
2023, while the combined DC electricity use for the four largest operators has more than tripled 
(Kamiya and Coroamă 2025). In this context, improving the energy efficiency of data centers will 
continue being of great importance (Hintemann and Hinterholzer 2019); and understanding its 
main drivers is a necessary prerequisite. 

Servers are responsible for around 70 to 80 % of the electricity demand of IT devices in DCs 
(Shehabi et al. 2016; Masanet et al. 2020; Hintemann et al. 2020; 2022). Their energy efficiency 
prospects are thus crucial for the future developments. Due to miscellaneous computing 
workloads, configurable hardware and software, technological dependencies with other 
physical/software elements or between server and software, the energy efficiency of servers is 
difficult to assess. It remains a complex topic and the processes behind it are poorly 
understood in many aspects.  

1.1 Purpose and significance  
Solid assessments of current and (to the extent possible) future server efficiency trends are 
crucial for an accurate understanding of current and future energy demands of data centers. 
However, this task is hindered by several challenges. The lack of standardized methodologies 
and assumptions makes comparisons between different studies difficult. Defining system 
boundaries and considering technological dependencies with other physical and software 
components presents another obstacle. Furthermore, the dynamic nature of the data center 
domain and rapid innovation cycles make long-term predictions particularly challenging. 

In this context, the main objective of this study is to provide updated insights into the 
development of the energy efficiency of servers in their operation phase. A thorough breakdown 
of the historical developments and their drivers is followed by an analysis of the current and 
expected future state of these drivers, and of the expected further technological developments. 
For the different server types, various metrics and their significance will also be analyzed in this 
context. Finally, based on this analysis, a rough estimate for further development of server 
efficiency by 2030 is provided. 
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1.2 Main objectives and research questions 
This study examines the historical development of energy efficiency in servers during their 
operation phase (other life cycle phases, in particular raw material extraction and production, 
are not considered). Next to further insights from literature review and expert interviews, this 
analysis also informs the assessment of possible future developments.  

The research aims to answer several key questions:  

• How has server energy efficiency evolved over the past 10 years?  
• What factors have had the greatest impact on this efficiency? 
• Based on these trends and influencing factors, what is a plausible projection for server 

energy efficiency up to 2030?  
• Finally, how reliable are these estimates given the available server measurement data 

and what are the key uncertainties that may affect future projections?  

The results will further inform EDNA’s upcoming Total Economic Model (TEM) version 4.0. EDNA 
is the Efficient, Demand Flexible Networked Appliances platform of the 4E Technology 
Collaboration Programme (TCP) of the International Energy Agency (IEA). The platform provides 
analysis and policy guidance aimed at improving the energy efficiency and demand flexibility of 
connected devices and networks, reflected, for example, in previous TEM versions v1.0  (Ryan, 
Smith, and Wu 2019) and v2.0 (Ryan, Smith, and Wu 2021). 
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2 Scope of the study 
Together with networking and storage systems, servers are fundamental IT elements in data 
centers. To discuss their energy efficiency in Section 4, we first define servers more formally and 
how they relate to the rest of the data center ecosystem (Section 2.1). Section 2.2 then explores 
the energy efficiency of servers, deriving it from more general definitions of energy efficiency. 
After Section 2.3 addresses the main types of servers covered by this study, Section 2.4 finally 
discusses the scope of the study more broadly, showing what lies within its boundaries, and 
what outside of them.  

2.1 Physical servers and the data center ecosystem 
A server is a dedicated, high-performance computer specifically designed to run server software 
and deliver various services to other computers or devices over a network. It is built with 
powerful processors (such as CPUs, GPUs, TPUs, chiplets, or others), extensive RAM, and 
substantial storage, along with multiple network interfaces and redundant power supplies for 
maximum reliability.   

Servers are designed for minimal downtime and can be scaled to meet increasing demands. 
They also offer advanced remote management capabilities and robust security to protect 
critical data. They are used in a wide variety of applications, from hosting websites and 
databases to supporting cloud computing, machine learning, or cryptocurrency mining. They 
are essential for businesses and organizations that require high performance, reliability, and 
control over their IT infrastructure. 

Most aspects of server energy efficiency can be discussed in this narrow sense of server of 
physical device. Some of the main factors influencing such a narrow perception of servers as 
physical devices are shown in Figure 1. 

 

Figure 1 Main factors influencing the energy efficiency of servers as physical devices in a narrower sense. 

Servers, however, are part of the larger data center ecosystem. The overall system efficiency 
(defined as computational output per energy input, see below) is influenced by numerous 
factors of this wider ecosystem. As shown in Figure 2, these factors include software aspects 
such as the operating system and the types of applications running on the server, and in 
particular numerous features of the DC power delivery and cooling infrastructure, such as 
power generation and distribution, the design of the Uninterruptable Power Supply (UPS) units 
as well as deployed chillers, ventilators, pumps, heat exchangers, etc. In the widest of senses, 
even the climate the DC resides in has a strong say in overall system efficiency. 
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Figure 2 Schematic representation of a server’s system interdependencies with software and other physical domains 
in the data center. They include efficiency interdependencies towards software (e.g., software efficiency, 
virtualization, CPU power management such as P-/C-states, dynamic voltage and frequency scaling) and efficiency 
interdependencies towards the data center infrastructure (such as air/liquid cooling, heat reuse, and UPS). 

2.2 Energy efficiency of servers 
In physics, energy efficiency (EE) typically describes the efficiency of energy conversion1 and is 
defined as  

𝐸𝐸 =
𝑢𝑠𝑒𝑓𝑢𝑙 𝑒𝑛𝑒𝑟𝑔𝑦 𝑜𝑢𝑡𝑝𝑢𝑡

𝑡𝑜𝑡𝑎𝑙 𝑒𝑛𝑒𝑟𝑔𝑦 𝑖𝑛𝑝𝑢𝑡
 (1) 

More generally, however, energy efficiency of a system is the ratio of useful output, which can 
be in any form (e.g., work, products, services), to the total energy input required to generate that 
output. So, while the input is always energy, the output can take any quantifiable form: 

𝐸𝐸𝑂 =
𝑢𝑠𝑒𝑓𝑢𝑙 𝑜𝑢𝑡𝑝𝑢𝑡

𝑒𝑛𝑒𝑟𝑔𝑦
 (2) 

In transportation, for example, energy efficiency is defined as the distance travelled by 
passengers or goods divided by the energy input needed to acquire it.2 For buildings, it often 
describes the provision of a comfort temperature for a given surface in a building divided by the 
required energy input.3 And the energy efficiency of an entire economy is measured as the 
amount of GDP generated for the energy input.4 

 
1 See https://www.studysmarter.co.uk/explanations/physics/energy-physics/efficiency-in-physics/. 
2 See https://en.wikipedia.org/wiki/Energy_efficiency_in_transport. 
3 See https://www.geze.com/en/discover/topics/energy-efficiency-of-buildings. 
4 See https://ec.europa.eu/eurostat/cache/digpub/energy/2019/bloc-4b.html. 
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In the computing domain in general and for servers in particular, the useful output are 
computations: “Energy efficiency refers to maximizing the amount of computational work 
completed for the amount of energy consumed”.5 This is represented in Equation 3: 

𝐸𝐸𝑐𝑜𝑚𝑝𝑢𝑡𝑒 =
𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑠

𝑒𝑛𝑒𝑟𝑔𝑦 
 (3) 

According to Equation 3, computational efficiency is the computational performance of an 
individual server (output) relative to its energy consumption (input). As with all efficiencies, 
higher values are better.  

The inverted efficiency yields energy intensity (EI) of computation (or “computational intensity” 
in short), which represents the amount of energy required for a given number of computations. 
For the computational intensity, lower values are better: 

𝐸𝐼𝑐𝑜𝑚𝑝𝑢𝑡𝑒 = (𝐸𝐸𝑐𝑜𝑚𝑝𝑢𝑡𝑒)
−1

=
𝑒𝑛𝑒𝑟𝑔𝑦

𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑠 
 (4) 

While the input (i.e., energy consumption) is conceptually straightforward, the output (i.e., 
computational performance) is difficult to define, as various “compute products” are possible 
such as computations, storage, database analyses, encryption or cryptography, IO/network 
bandwidth, etc. Accordingly, the computational performance of servers can be measured and 
evaluated very differently depending on the application it serves. Hence, Section 2.3 below 
discusses the types of servers under scrutiny in this study. As part of the deployed 
methodology, Section 3.1 then defines and discusses the energy efficiency metrics used for 
each of these server types.  

2.3 Main server types 
The evolution of servers is closely intertwined with the evolution of computers and networks. 
The advent of minicomputers in the 1960s and 1970s, which were much more affordable than 
mainframes,6 allowed for the first time a more decentralized computing. The rise of file servers 
in the late 1980s then enabled efficient sharing of files across the local-area network (LAN).7 
Arguably one of the most notable developments regarding computers in data centers were the 
advent of rack-mounted servers in the 1990s and of virtualization in the late 2000s.8 They 
brought about new possibilities for growth and efficiency through enhanced scalability and 
simplified management and paved the way for today’s era of cloud computing. Currently, it can 
be assumed that 2+ socket servers make the largest share of server types, but 1-socket servers 
and GPU accelerated servers are expected to grow faster (Shehabi et al. 2024).  

2.3.1 CPU-based general-purpose servers 
Over the past few decades, general-purpose servers, traditionally CPU-based, have undergone 
significant evolution driven by advancements in microprocessor architecture, fabrication 
technologies, and system integration. In the 1990s, server performance was primarily limited by 
single-core processors following the von Neumann architecture, which processed instructions 
sequentially. The introduction of pipelining and superscalar designs allowed processors to 
execute multiple instructions per cycle, enhancing efficiency. However, the growing demand for 

 
5 See https://www.nvidia.com/en-us/glossary/energy-efficiency/.  
6 See https://en.wikipedia.org/wiki/Minicomputer. 
7 See https://www.gartner.com/en/information-technology/glossary/file-server. 
8 See https://www.thomastechllc.com/articles/server-evolution. 
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higher performance outpaced the gains from increased clock speeds due to thermal and power 
constraints. This led to the advent of multi-core processors in the early 2000s, enabling 
parallelism at the chip level by integrating multiple processing units on a single die, thus 
improving throughput without proportionally increasing power consumption. 

A key technological shift occurred with the development of virtualization technologies, which 
allowed multiple operating systems and applications to run on a single physical server, 
improving hardware utilization and scalability. Furthermore, the transition from conventional 
memory hierarchies to non-uniform memory access (NUMA) architectures enabled better 
handling of memory-intensive workloads by optimizing data locality. The evolution of instruction 
set architectures (ISAs) such as x86_64 and the increasing use of specialized instruction sets 
like SIMD (Single Instruction, Multiple Data) also contributed to improved performance for 
specific workloads. In recent years, innovations in energy efficiency, the rise of heterogeneous 
computing, and advancements in interconnect technologies like PCIe and NVMe have driven 
the performance of modern CPU-based servers, enabling them to handle increasingly diverse 
and compute-intensive tasks, including AI workloads, cloud computing, and high-performance 
computing (HPC) environments. 

2.3.2 GPUs and TPUs: Accelerated computing for machine learning 
Roughly at the same time while volume servers and cloud computing were becoming 
widespread, another crucial technology was evolving out of its infancy: machine learning (ML). 
While a relatively young field, ML has roots stretching back to the mid-20th century. Early 
pioneers like Arthur Samuel in the 1950s developed first programs that could learn from data, 
laying the foundation for concepts such as neural networks and reinforcement learning.9   
Progress continued through the decades, with key advancements in algorithms and techniques 
for pattern recognition, decision-making, and artificial intelligence.10  Early machine learning, 
however, was limited by the available computing power.  

A significant turning point came in the late 2000s with the rise of Graphics Processing Units 
(GPUs) for general-purpose computing. Originally designed for rendering graphics in video 
games, GPUs excel at parallel processing, performing many calculations simultaneously. About 
2 decades ago, in 2003, two research groups have independently shown (Krüger and 
Westermann 2003; Bolz et al. 2003) how this capability of GPUs can be used for general-
purpose computing in a paradigm known as “General-purpose computing on graphics 
processing units” (GPGPU).  

This capability was also ideally suited for the matrix operations at the heart of most machine 
learning algorithms (Steinkraus, Buck, and Simard 2005; Chellapilla, Puri, and Simard 2006). By 
harnessing the parallelism of GPUs, training complex models like deep neural networks became 
significantly faster and more efficient (Raina, Madhavan, and Ng 2009). This potential was 
quickly recognized by GPUs producers, who started to first advertise and then increasingly tailor 
GPU architecture towards the needs of ML algorithms. To some extent this applies to 
workstation and enterprise-oriented GPUs, but mainly to the increasingly important data-
center-grade server GPUs.11 While most of the quickly expanding ML industry relies on GPUs, 
Google decided back in 2014 to develop its own custom-built chips for machine learning: the 
Tensor Processing Units (TPUs)12. TPUs are application-specific integrated circuits (ASICs) 

 
9 See https://www.tableau.com/data-insights/ai/history. 
10 See https://www.sparkfun.com/news/7896. 
11 See https://www.nvidia.com/en-us/data-center/products/. 
12 See https://cloud.google.com/transform/ai-specialized-chips-tpu-history-gen-ai. 
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designed to accelerate machine learning workloads deployed across Google’s data centers.13 
For accelerated computing, our study covers both GPU- and TPU-based servers. 

2.3.3 Hash-performing ASICs for proof-of-work in cryptocurrency mining 
The TPUs addressed above are one flavor of ASICs. Another type that is widespread in servers 
are ASICs used in cryptocurrency mining, especially in crypto currencies, which use the proof-
of-work consensus mechanism. While in the very beginning of Bitcoin from 2008-2009 on, CPUs 
were used for mining, due to the advantages of the GPGPU paradigm outlined in Section 2.3.2 
above, they were replaced around 2011 by the faster and more energy-efficient GPUs. These in 
turn were quickly outpaced by field-programmable gate arrays, which were finally replaced by 
ASICs.  

Since about 2013, ASICs have become the dominant force in cryptocurrency mining, 
particularly for Bitcoin (Bedford Taylor 2017). Unlike general-purpose CPUs or GPUs, these 
ASICs are specifically designed to perform a single task: compute the cryptographic hash 
functions required to validate transactions and add blocks to the blockchain in the energy-
intensive paradigm (Coroamă 2021; 2022) known as proof-of-work (PoW). Such hash-
performing ASICs deployed in cryptocurrency mining are part of this study as well. 

2.4 Dimensions within the scope of the study and outside its scope 
After having addressed the energy efficiency of servers and discussed the types of relevant 
logical processing units (LPUs), we can now proceed to define the system boundaries of this 
study across several dimensions. Given the complexity of the relation between servers and the 
DCs the typically operate in addressed in Section 2.1, drawing the system boundary is not trivial 
in all of the dimensions. As our interest lies in the energy efficiency of servers themselves, we 
exclude the factors that are entirely exogeneous to servers like the physical infrastructure of 
DCs or software aspects such as operating system or application type. 

Other software aspects, such as the server power management or virtualization, however, relate 
directly to the functioning of servers and thus to their efficiency – they are thus very much within 
the system boundaries. From the physical aspects related to cooling and power supply, one is 
tightly interconnected with the way servers’ function: the type of cooling, whether air- or liquid-
based. Unlike more distant characteristics such as the design of chillers (for air cooling) or the 
exact refrigerant deployed (for liquid cooling), the cooling paradigm (air or liquid) is considered 
within system boundaries. Table 1 summarizes the boundaries of this study along several 
dimensions. 

 
13 See https://cloud.google.com/tpu/docs/system-architecture-tpu-vm. 
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Table 1 An overview of this study ‘s system boundaries across several relevant dimensions. 

Dimension Within the scope Outside the scope Comments 
Type of equipment servers, GPU accelerators, 

crypto mining equipment 
end-user computing 
equipment, Telco 
equipment (routers, 
switches), pure 
storage systems 

 

Type of logical 
processing unit (LPU) 

CPU, GPU & TPU, 
dedicated computing 
hardware (ASICs) 

 All LPU types are relevant, 
as long as they are in 
servers (and not other 
devices). 
For non-x86 CPUs, data 
might be sparse. 

Localization of energy 
consumption 

computing, memory, 
storage, network I/O, PSU, 
server integrated fan 

air cooling, lighting, 
UPS (i.e., all non-IT 
PUE contributors) 

 

External impact on 
energy efficiency of 

servers 

liquid cooling, 
environment temperature 
in IT room 

waste heat recovery, 
more distant 
technologies (e.g., 
type of refrigerant) 

 

Software server power management 
and virtualization 

operating system, 
applications 

 

Time horizon historic, present, future 
projections 

 Projections have inherent 
uncertainties, which grow 
over time.  

Current server efficiency  state-of-the-art of servers 
on the market 

overall stock State-of-the-art is more 
relevant than overall stock 
for modelling, but not 
always distinguishable in 
the data. 
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3 Methodology  

3.1 Efficiency metrics for the individual server types 

3.1.1 General purpose servers 
As briefly addressed in Section 2.1 above, general purpose servers perform a large variety of 
tasks. Servers combine processors, memory and networking to a varying degree, and all these 
hardware types come in different flavors from numerous producers, each of them additionally 
evolving over time. Some server configurations might excel at a certain type of tasks, while other 
configurations will excel for different types of tasks. Comparing the energy efficiency of volume 
servers is thus no straightforward task.  

To reflect both this complexity and the variety of server tasks, for about a decade and a half now, 
a synthetic benchmark which performs various types of operations has been established. It is 
called “SPECpower_ssj2008” (SPEC 2018). The acronym SPEC stands for “Standard 
Performance Evaluation Corporation”, a non-profit organization that develops standardized 
benchmarks to measure and compare the performance of computer systems.14 The acronym 
“SSJ” stands for “Server-Side Java” and represents the benchmark itself, a synthetic workload 
of typical (and varied) server-side Java business applications.  

The benchmark proves a standardized way to evaluate and compare the efficiency of different 
servers and has thus become a widely recognized benchmark in the volume server industry. It 
also puts forward two metrics that are relevant in our context: 

• The main performance metric it uses are SSJ_ops (Server-Side Java operations per 
second), which measure the throughput (in terms of SSJ operations per second) at 
different server load levels (from idle to 100% utilization). These results are then 
aggregated to produce the overall “SSJ_ops” score (SPEC 2018).  

• The main efficiency metric relates this SSJ performance to the server’s power 
consumption:  
 

𝐸𝐸𝑥86−𝑆𝑆𝐽 =
𝑆𝑆𝐽𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒

𝑃
 𝑖𝑛 [

𝑆𝑆𝐽𝑂𝑃/𝑠

𝑊𝑎𝑡𝑡
] (5) 

 
• As secondary efficiency metric, the SERT 2 metric is used. The SERT 2 metric provides a 

comprehensive energy efficiency assessment by considering multiple workload types 
that represent real-world server usage patterns, including CPU, memory, and storage 
workloads, rather than focusing solely on peak performance scenarios. It also measures 
power consumption across different load levels, from idle to full utilization, giving a good 
picture of how the server performs under varying conditions throughout its operational 
lifecycle. The standardized test methodology and reporting format of SERT 2 enables fair 
comparisons between different server configurations and vendors, while its recognition 
by regulatory bodies like the US EPA's ENERGY STAR program adds to its credibility as a 
reliable efficiency metric. SERT 2 is a weighted average of various efficiency metrics for 
worklets (including different utilization levels): 
 

 
14 See https://www.spec.org/. 
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𝐸𝐸𝑙𝑜𝑎𝑑 =
 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒

𝑃
 [

1

𝑊𝑎𝑡𝑡
] (6) 

 
These in turn are summarized in CPU, memory and storage metrics, which in turn are 
weighted with weighting factors 65% for CPU, 30% for memory and 5% for storage to 
form the SERT 2 metric.  
 

𝑆𝐸𝑅𝑇2 =  exp (0.65 ∗  𝑙𝑛(𝐸𝑓𝑓𝐶𝑃𝑈) +  0.3 ∗  𝑙𝑛(𝐸𝑓𝑓𝑀𝑒𝑚𝑜𝑟𝑦) +  0.05 ∗  𝑙𝑛(𝐸𝑓𝑓𝑆𝑡𝑜𝑟𝑎𝑔𝑒)) (7) 
 

The analysis distinguishes between single-CPU servers, 2-CPU servers and large systems with 
more than 2 CPUs. Only the number of CPUs that is actually occupied is taken into account, so 
if a server has two sockets but only one CPU is installed, it is treated as a single-CPU server.  

3.1.2 Accelerated computing for ML 
For accelerated computing, such an established de-facto industry standard does not exist. It is 
probably also not needed: Their operations are more homogeneous, focusing almost exclusively 
on the matrix multiplications required by most machine learning models, especially by deep 
learning.  

As proxies for server performance and efficiency, and in line with the literature (Hobbhahn, 
Heim, and Aydos 2023), we thus use the performance and efficiency of the hardware 
accelerators themselves: 

• The typical performance metric for accelerators (in this study, GPUs and TPUs) is the 
number of floating-point operations (FLOPs) performed in one second, measured 
nowadays either in GFLOP/s (gigaflops per second) or TFLOPs (teraflops per second). 
We will use [TFLOP/s]. 

• Correspondingly, and symmetrically to volume servers, the efficiency metric relates this 
performance to the power consumption of the accelerators. As the performance often 
measures dozens or hundreds of TFLOPs and is divided by typically hundreds of Watts, 
the result would often be sub-unitary (i.e., less than 1) if we were to use [TFLOPs/Watt]. 
The preferred efficiency metrics is thus [GFLOPs/Watt] instead: 
 

𝐸𝐸𝐴𝑐𝑐 =
𝐺𝑃𝑈𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒

𝑃
  𝑖𝑛 [

𝐺𝐹𝐿𝑂𝑃/𝑠

𝑊𝑎𝑡𝑡
] (8) 

In practice, however, various ways to represent real numbers as floating points exist (on 8, 4 or 2 
bytes, for example, or by using different coding on the same representation length), and the 
operations on these representations consequently have differing computing requirements. For 
the same GPU, the performances (in terms of operations per second) will thus naturally differ 
for the various floating-point representations. Additionally, ML algorithms can also take 
advantage of special circumstances, for example that the matrices that are multiplied in ML 
algorithms are often sparsely populated – special algorithms can thus be devised to speed up 
the computation. The performance for each of these cases generally needs to be devised 
separately. Some of the most common representations and algorithmic conditions include: 

• FP64 (Double-precision floating-point): Represents numbers using 64 bits, providing 
high precision and a wide dynamic range. Often used in scientific computing and 
simulations where accuracy is crucial; it requires more memory and processing power. 
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• FP32 (Single-precision floating-point): Represents numbers as 32 bits, offering a 
balance of precision and efficiency. Until some years ago, it used to be the most 
common format for general-purpose machine learning training and inference. 

• FP16 (Half-precision floating-point): 16-bit-representation, requiring less memory and 
enabling faster computations. Often used for deep learning training and inference, 
especially on GPUs and TPUs with specialized hardware support. However, it has a 
smaller dynamic range and lower precision than FP32. 

• FP16 with sparsity: This refers to techniques that leverage the sparsity (presence of 
many zeros) in neural network weights or activations to further reduce memory usage 
and computational costs. It can improve efficiency for specific models and tasks. 

• BF16 (Brain Floating Point): Also uses 16 bits, but with a different distribution. As FP16, 
it has 1 bit for the sign; however, while FP16 uses 10 bits for the fraction (mantissa) and 5 
for the exponent, BF16 uses only 7 bits for the mantissa and 8 bits for the exponent. This 
format sacrifices some precision in the fractional part to accommodate a wider range of 
exponents. BF16 is designed for deep learning and often preferred over FP16 for certain 
hardware, particularly for TPUs. While it does not differ from FP16 in terms of the 
performance considered in this study (operations per second), it uses those operations 
for larger numbers, thus achieving more high-level computations.  

• Mixed precision is a technique used in deep learning that combines different numerical 
precisions (e.g., FP32, FP16, BF16) during model training and inference. Using lower 
precision (such as FP16 or BF16) for certain operations can significantly speed up 
computations, especially on hardware with specialized support for these formats (like 
Tensor Cores in Nvidia GPUs or matrix units in TPUs). Lower precision data types also 
require less memory, allowing for larger models or larger batch sizes during training. By 
strategically using higher precision (FP32) for critical operations or parts of the model, 
however, mixed precision can maintain the accuracy of the final results while still 
enjoying many performance benefits of lower precision. 

Section 3.3 discusses which of these floating-point representations and computation 
paradigms are relevant to our analysis, and why.  

3.1.3 ASICs  
For the ASICs used in hashing, the picture is much simpler. As the only relevant operation are 
hashes, they define both performance and efficiency: 

• The performance metric is the number of hashes per times, measured in Terahashes 
(TH) per second. 

• As for CPUs and GPUs earlier, the efficiency metric relates to the performance to power: 
 

𝐸𝐸𝐴𝑆𝐼𝐶 =
𝐻𝑎𝑠ℎ𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒

𝑃
  𝑖𝑛 [

𝑇𝐻
𝑠⁄

𝑊𝑎𝑡𝑡
] (9) 

3.2 Data collection 
For the analysis of historic trends and current data, a combination of benchmarking datasets for 
numerous servers and technical data from manufacturers were used. To a lesser extent and 
only when direct measurements or manufacturer data were not available, third-party 
measurements or estimates were also considered. The time horizon for historic data was 10 
years, i.e., 2015 – 2024.  
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3.2.1 General purpose servers 
For volume servers, SSJ benchmarks were used from two large datasets, with hundreds of data 
points each: the already mentioned SPECpower dataset (SPEC 2018) and the SPEC “server 
efficiency rating tool” (SERT) dataset provided by ITI – the green grid.15 Those benchmarks 
require to record the respective power consumption at all load stages, which makes it possible 
to create a dynamic load profile. The data was evaluated for possible categorization, as briefly 
discussed in Section 3.3 below, and then analyzed in more detail in Section 4.1.  

The benchmark data included launch dates of servers. A validation check revealed that these 
dates were wrong in some cases, as the servers were supposed to have been launched before 
their chips existed. Therefore, the authors looked up all the chip launch dates and used them to 
correct the server launch dates. The time axis in chapter 4 refers to chip manufacturing date. 

3.2.2 Accelerated computing (GPUs and TPUs) 
For GPU- and TPU-accelerated servers, no such comprehensive dataset exists. We thus went to 
the main GPU manufacturers (i.e., Nvidia, AMD and to a lesser extent Intel) as well as Google as 
TPU manufacturer and gathered data on their chips designed specifically for data centers and 
high-performance computing (HPC). The following data was collected:   

• their FP32, FP16, BF16 performances (not all were always devised), 
• to highlight the importance of the advent of tensor cores, we separately collected FP16 

and FP16 with tensor cores performance, 
• the Thermal Design Power (TDP), which is the power consumption under maximum 

load,16 and was used as standardized proxy – similarly to (Hobbhahn, Heim, and Aydos 
2023) – for power consumption whilst computing the 𝐸𝐸𝐴𝑐𝑐  efficiency according to 
Equation 8, 

• launch date (month and year),  
• where available, also the type and size of memory as well as the type and number of 

cores.  

Because the design and complexity for both memory and cores (and especially for the cores) 
have large variations, the size of memory or number of cores were not used in a quantitative 
analysis. The important influence of memory evolution for GPU and TPU efficiency is 
nevertheless qualitatively addressed in Section 5.1. Table 2 shows the individual DC and HPC-
grade GPUs and TPUs analyzed for this study. 

Table 2 The three GPU manufacturers as together with their DC/HPC-grade GPUs analyzed in this study, as well as 
Google‘s TPUs under scrutiny. 

Producer GPUs (TPUs for Google) 
AMD FirePro D300, Instinct MI 6, Instinct MI 25, Instinct MI 50, Instinct MI 60, Radeon Pro V340, 

Radeon Pro VII, Instinct MI 100, Instinct MI 210, Instinct MI 250, Instinct MI 250X, Instinct MI 
300, Instinct MI 300X 

Intel Xeon Phi 7295, Arc A380, Arc A750, Arc A770, Habana Gaudi 2, Habana Gaudi 3 
Nvidia Kepler K80, Maxwell M40, Pascal P80, Pascal P100, Volta V100, Turing T4, Ampere A100, Ada 

L40, Ada L40S, Asa L4, Hopper H100, Hopper H200, Blackwell B100, Blackwell B200 
Superchips: Grace-Hopper GH200 (1 Grace CPU, 1 Hopper GPU), Grace-Blackwell GB200 (1 
Grace CPU, 2 Blackwell GPUs) 

Google TPU v2, TPU v3, TPU v4, TPU v5e, TPU v5p 
(for TPU v5e and v5p only performance data, but no consumption data available). 

 
15 Based on data from The Green Grid®'s TGG Server Energy Efficiency Database v02_00 of SPEC SERT® 
benchmark results.  More details to the SERT benchmark can be found at https://www.spec.org/sert/. 
16 See https://www.intel.com/content/www/us/en/support/articles/000055611/processors.html. 

https://www.spec.org/sert/
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3.2.3 Cryptocurrency mining equipment 
Cryptocurrency mining equipment refers to specialized hardware used to solve complex 
cryptographic puzzles required for validating transactions and securing blockchain networks. 
This process, known as mining, requires substantial computational power to solve 
mathematical algorithms, typically based on proof-of-work (PoW) consensus mechanisms. In 
the early days of cryptocurrencies like Bitcoin, mining was performed on general-purpose 
servers or standard CPU-based systems. However, as the difficulty of mining increased, more 
powerful hardware became necessary, leading to the adoption of GPUs and, later, application-
specific integrated circuits (ASICs) designed explicitly for high-efficiency mining tasks. 

The connection between crypto mining and servers lies in their shared reliance on high 
computational throughput and efficiency. Initially, CPU-based servers, like those used for 
conventional tasks in data centers, were adapted for mining. However, as mining became more 
competitive, the development of dedicated mining rigs—hardware specifically optimized for 
solving cryptographic functions—outpaced general-purpose servers. Mining equipment has 
evolved rapidly, with ASICs now dominating the industry due to their superior performance-per-
watt ratio. As a result, modern mining operations often require large-scale, server-like 
infrastructures, equipped with optimized cooling and power management, mirroring data 
centers in design but purpose-built for mining cryptocurrencies. 

As main sources for performance, power consumption and efficiency technical specifications 
of manufacturers are used, as well as websites that collect such data like (hashrateindex.com 
2024). 

3.2.4 Future trends 
“Predictions are difficult, particularly about the future”; so the adage goes. In the field of digital 
technologies, with its high dynamics of development and the short innovation cycles, it is 
particularly challenging to make long-term predictions on technological advancements. Wild 
cards of revolutionary technological development can always appear, in particular for highly 
innovative topics such as chip structures; their appearance is impossible to predict. 

Conservatively, our analysis of future trends is limited to the trends that can be foreseen to a 
certain degree of certainty. It thus focuses mainly on the analysis of historical trends deemed as 
important for past energy efficiency developments (together with the question on whether these 
trends might continue and can thus be extrapolated for a few more years, or whether they are 
already showing signs of change), as well as newer trends that are foreseeable and perhaps 
even technologically required (such as liquid cooling for continuingly more powerful and dense 
servers). 

The main data sources for future trends and the impact of technological developments on 
server energy efficiency were the insights generated during the analysis of past trends and the 
relevant past technological leaps, academic and industry literature research for future trends, 
and a few interviews with chosen experts from industry and research. 

3.3 Data analysis 
During data analysis, the data was first evaluated for possible categorization. For example, 
standards volume servers were broken down into 1-socket, 2- socket, and multi-socket servers, 
and the analyses were performed separately on each of these categories. Further performance 
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indicators and benchmark results were selected to reflect the output in different terms (such as 
computations, memory, etc.).  

The exact performance and efficiency metrics, as well as the assessment conditions were 
chosen. In actual usage, servers are typically operated in a certain partial load range. Efficiency 
in the partial load range is thus also very relevant; for volume servers, for which this data exists, 
performance and efficiency were thus devised for 0% load (i.e., idle), 12,5%, 25%, 37,5%, 50%, 
62,5%, 75%, 87,5% and 100% load. 

For GPUs, the exact performance and efficiency metrics were chosen among those discussed in 
Section Error! Reference source not found.. As will be discussed further in the Results, the 
trend in ML algorithms is clearly (and has been for some time now) to trade precision for speed 
and large data volumes. For ML, FP64 is thus essentially irrelevant and will not be discussed.  

Although FP32 is also becoming less and less prevalent and for many of the more recent GPUs, 
manufacturers often no longer even bother to mention their FP32 performance, we do consider 
it in our analysis for the historic developments. FP16 and BF16 are central to our analysis; 
because of their equal size and our metric (i.e., operations per second), we treat them jointly. 
Sparsity and mixed precision are not considered in our analysis, because they can be 
implemented (and interpreted) differently and are thus not well-suited for benchmarking 
performance or efficiency. 

The changes over time in each of the thus-determined categories was then documented. The 
numeric results are presented in Section 4 below. For each category, we present 3 types of 
results: performance, power (i.e., TDP), and efficiency as the ratio of the two. For trends, we 
devise for each year the mean value across all servers / chips launched in that year. Due to 
noise in the data (in particular due to sparse data for some of the years), however, we also 
devise a 3-year smoothened curve. 

Past trends were identified from the data analysis itself (corroborated with important shifts in 
performance or efficiency), literature review, and interviews. The individual historic trends were 
then also evaluated on possible continuation for the future analysis. The future analysis was 
also complemented by literature research and with insights gathered from the interviews. In 
total, four experts were interviewed for the study. They represent perspectives from science 
(building energy and cooling technologies), data center operations (hyperscale respectively 
colocation data centers) and a microchip and power converter producer.  

  

  



15 
 

4 Results: Server efficiency developments over the last 
decade (Quantitative analysis) 

4.1 General purpose servers 

4.1.1 Performance 
The two diagrams provided in Figure 3 illustrate the performance trends of one-CPU (left) and 
two-CPU (right) servers in terms of maximum SSJ operations at 100% utilization from 2015 to 
2023. Each graph shows individual performance values (for each SERT benchmarked system) as 
scattered dots, along with an average performance curve (blue) and a smoothed trend line 
(orange), allowing for an interpretation of overall developments in processing power across the 
observed period. 

 

  

 
Figure 3: The growth in performance of CPU and Memory of single-CPU servers (left) and dual-CPU servers (right) ) 
and servers with more than two CPUs (bottom) based on the SSJ benchmark.  
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As the market launch date (often only available as a quarter) of the CPUs installed in the servers 
was used to arrange the servers on the timeline, there are always a relatively large number of 
points horizontally above each other. Similarly, the chip generations, some of which were 
introduced alternately with high-performance cores (P-cores) and efficiency cores (E-cores), 
show an upward and downward movement in the trend, which overlays the long-term upward 
trend. The performance of single-CPU servers as well as dual-CPU servers has increased 
significantly over the last years. For single-CPU servers, the average annual growth rate was 
about 55% in the years between 2015 and 2022. For dual CPU servers, the growth rate in this 
period is slightly lower at 45% per year.  

The improvements in SSJ benchmark results over recent years can be attributed to a range of 
advancements in server hardware and software. One of the key drivers has been processor 
architecture improvements, with modern CPUs offering higher core counts, increased clock 
speeds, and advanced instruction sets like AVX-512, all of which enhance the ability to handle 
parallel workloads and compute-intensive tasks. Larger, faster CPU caches have also reduced 
memory latency, further boosting performance. 

In tandem, the memory subsystem has seen significant upgrades. Faster memory technologies 
such as DDR4 and DDR5 have increased bandwidth and reduced latency, allowing for quicker 
data access by the CPU, while more efficient memory management technologies have 
optimized multi-channel configurations to handle large datasets common in Java workloads 
which is especially relevant for the SSJ benchmark. 

Multi-threading and virtualization improvements, such as enhanced Simultaneous Multi-
Threading (SMT) and hyper-threading, allow servers to run multiple threads per core more 
efficiently. Additionally, modern Java Virtual Machines (JVMs) have introduced optimizations like 
better garbage collection and thread management, allowing applications to use resources more 
effectively. Virtualization technologies have also matured, improving the performance of 
containerized and virtualized workloads. 

 

  
Figure 4: The results of memory capacity benchmarks for single-CPU servers (left) and dual-CPU servers (right). Not 
sufficient data points for servers with >2 CPUs. 
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I/O and storage technologies have advanced with faster interconnects like PCIe 4.0 and NVMe 
SSDs, greatly reducing bottlenecks in data transfer and access times, which is crucial for the 
data-heavy operations in Java workloads. At the same time, the sizes of typical memory have 
increased massively in servers. The effect of this can also be seen in the memory capacity 
benchmark (see Figure 4). 

Improved network speeds and storage access times also contribute to higher throughput and 
lower latency. Software advancements, such as optimizations in operating systems, Java 
compilers, and modern garbage collection algorithms, have improved how effectively hardware 
resources are used, further contributing to better benchmark results. Power management and 
thermal designs have improved as well, allowing servers to run at higher speeds for longer 
durations without overheating. 

Lastly, innovations in server architecture, including chiplet designs and hybrid CPU 
architectures—have enabled more scalable and efficient resource sharing. Cloud-native 
applications and microservices, increasingly common in enterprise environments, are also 
driving optimizations in hardware usage, making modern workloads more efficient. 

These collective improvements in hardware, software, and architecture have driven significant 
gains in SSJ performance, reflecting the overall trend of more efficient and powerful server 
systems. 

4.1.2 Power consumption 
Max computation load 

Albeit not by far as the performance, the maximum power consumption per device (server) has 
also been rising in the previous years (see Figure 5). For single-CPU servers it has almost 
doubled (factor 1,95) between 2017 and 2022 at an average increase of 14% per year. With a 
factor of 1.8, the increase of dual CPU servers has been slightly lower in that period. Larger 
systems, though, have increased their average power consumption even by a factor of 2.85 
between 2016 and 2021, but this could also be explained by the fact that at this time multiple 
very large single CPU systems (with heavy memory and storage) have been benchmarked.  

The rise in the maximum power consumption of general-purpose servers, particularly under 
conditions of full CPU and RAM utilization like in SSJ 100% benchmark, can be attributed to 
several architectural and technological advancements aimed at increasing computational 
performance and system throughput. These trends, though driven by the need for higher 
processing power and memory capacity, have inevitably resulted in greater energy demands 
during peak operational loads and can also be seen in technical specifications of servers and 
server chips (Sun et al. 2019). 

One primary factor is the evolution of processor design over the past decade. Modern server 
CPUs have experienced a dramatic increase in the number of cores per chip, as manufacturers 
have shifted toward multi-core architectures to meet the demands of multi-threaded 
applications, virtualization, and parallel processing. Each additional core increases the 
processing capacity of the CPU but also contributes to higher power draw when all cores are 
fully engaged. Moreover, server CPUs have been designed with higher clock speeds and 
enhanced instruction sets, further boosting their performance capabilities. However, higher 
clock frequencies and the associated dynamic power scaling (which increases power 
consumption quadratically with clock speed) result in a significant rise in energy consumption 
under full load. As a result, CPUs at maximum utilization today consume more power than their 
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predecessors, despite advances in power management techniques such as dynamic voltage 
and frequency scaling (DVFS). 

 

  

 
Figure 5: Maximum power use of single-CPU servers (left) and dual-CPU servers (right) and servers with more than 
two CPUs (bottom) 

Another critical factor is the increased memory bandwidth and capacity in modern servers. As 
data-intensive applications have become more prevalent, the demand for faster and larger 
memory has grown. Newer generations of DRAM, such as DDR4 and DDR5, offer significantly 
higher bandwidth and lower latencies compared to earlier memory technologies. However, 
these improvements come at the cost of higher energy consumption, particularly when memory 
is fully utilized. Larger memory modules and higher data transfer rates inherently increase 
power requirements due to the greater number of memory cells that must be powered and the 
increased energy needed to drive data transfers between the CPU and RAM. Furthermore, as 
servers are often configured with more memory channels and higher memory densities, the 
total power consumption of the memory subsystem has risen substantially during peak 
utilization. 
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Thermal management also plays a role in the rising power consumption of servers under 
maximum load. The more powerful processors and memory systems found in modern servers 
generate significantly more heat than earlier generations, requiring advanced cooling 
mechanisms. While cooling systems themselves are a secondary load on overall power 
consumption, the increased heat dissipation requirements influence the design of server 
components. For instance, servers are designed to maintain operational stability at high 
temperatures, which often requires additional energy overhead in the form of internal fans and 
cooling solutions that operate more aggressively as thermal output increases under heavy 
computational loads. This additional high-power consumption for the fans is also reflected in 
the disproportionately high increase in power consumption at high performance levels of 
modern servers (see the high values of the line diagram at 80% and 90% in Figure 6). 

 

Figure 6: Power consumption and Performance to Power Ratio of a modern server (random example from SPEC 
Power results17) 

Advances in server interconnects and communication pathways, such as PCIe and memory 
controllers, also contribute to the higher power draw under maximum utilization. Modern 
general-purpose servers often support high-bandwidth interconnects to enable rapid 
communication between CPUs, memory, and storage devices. The shift toward PCIe 4.0 and 
PCIe 5.0 standards, which enables increased data transfer rates, has introduced new 
possibilities in peak power demand through new power connectors which supply up to 600 W in 
PCIe 5.0. Similarly, integrated memory controllers and other auxiliary processing components 
operate at higher frequencies, leading to higher power consumption when handling large 
volumes of data. 

Finally, improvements in server architecture have paradoxically increased power requirements 
despite efforts to enhance energy efficiency. While new fabrication processes (such as 7nm and 
5nm technology) have reduced the power consumption of individual transistors, the overall 
energy savings have been offset by the sheer increase in the number of transistors integrated 
into each processor (Sun et al. 2019). These transistors are employed not only to increase raw 

 
17 The data from this result can be found under 
https://www.spec.org/power_ssj2008/results/res2024q2/power_ssj2008-20240327-01387.html 
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computational power but also to support features like larger caches, more complex pipeline 
architectures, and enhanced parallelism, all of which draw additional power during peak 
utilization. 

Idle power consumption 

The analysis of server CPU idle power consumption trends from 2015 to 2023 (see Figure 7) 
reveals significant patterns across different server configurations.  

A notable observation is the increasing divergence between maximum power capabilities and 
idle power consumption. This divergence is particularly pronounced in multi-CPU 
configurations, where maximum power thresholds have increased substantially while idle 
power consumption has maintained relatively moderate growth. This phenomenon suggests 
significant advancements in power management technologies and CPU idle state 
optimizations. 

  

 
Figure 7: IDLE power use of single-CPU servers (left) and dual-CPU servers (right) and servers with more than two 
CPUs (bottom), the smoothened maximum power consumption from above is shown as dashed grey line 
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More recent server models have a wide variety of idle power consumption, mostly in multi-CPU 
configurations, indicating diverse architectural approaches and system design methodologies. 
The period from 2020 to 2023 demonstrates a relative stabilization or marginal reduction in idle 
power consumption, with only a minimal upward trajectory. 

Perhaps most significantly, the data indicates that despite substantial increases in 
computational capabilities, as evidenced by rising maximum power thresholds, idle power 
consumption has remained comparatively stable.  

The smoothed averages underscores both the achievements in power efficiency and the 
persistent challenges in minimizing idle state energy consumption in high-performance server 
systems. 

4.1.3 Efficiency 
SSJ_op/s efficiency 

In Figure 8, the previous data is used to describe the efficiency of servers, as described in 
Equation 5 as function of computations (expressed as SSJ_op/s) per power consumption (Watt). 
Again, the first diagram shows single-CPU servers, the second (top right) shows double-CPU 
servers and the one on the bottom shows multi-CPU (>2) servers.  

For one-CPU systems (top left graph in Figure 8), there is a gradual upward trend in performance 
per watt, particularly after 2019. The performance appears relatively steady in the early years 
(2015-2019), with noticeable improvements after 2020. The scatter of individual points suggests 
that while some one-CPU systems achieve significantly higher efficiency, there is a broad range 
of performance levels, possibly indicating variability in design or technology among different 
systems. The smoothed line highlights a continuous improvement in average efficiency, 
particularly noticeable from 2020 onward. 

The two CPU systems (top right graph in Figure 8) show a more pronounced increase in 
efficiency from 2020, with average SSJ operations per watt accelerating more sharply than for 
one-CPU systems. A notable trend is the increasing clustering of individual values around higher 
performance levels after 2021, suggesting greater consistency in efficiency gains across 
systems. The exponential trend line shows this rapid improvement, particularly in recent years, 
indicating that advancements in two-CPU architecture are contributing significantly to better 
energy efficiency. The drop in 2023 in performance might be due to a low total number of CPUs 
in this period, which included many servers with the rather low-end Intel XEON Gold 5415+ 
CPUs, which had more modest SSJ/Watt results (below 8000 SSJop/s per Watt) as compared to 
other contemporary chips.  

In the case of multi-CPU systems (bottom graph in Figure 8), the scatter of individual values is 
larger, indicating significant variability in performance. However, the average performance per 
Watt also follows an upward trajectory, especially after 2020. This suggests that while there is 
substantial room for improvement, certain systems are achieving high efficiency, driving the 
overall trend upwards. The exponential curve reflects a steady improvement but with more 
pronounced variance compared to one- and two-CPU systems, likely due to the complexity of 
multi-CPU architectures. 
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Figure 8: Efficiency [SSJops per Watt] of single-CPU servers (left) and dual-CPU servers (right) and servers with more 
than two CPUs (bottom), the smoothened maximum power consumption from above is shown as dashed grey line 

 

SERT 2 Efficiency  

The diagrams in Figure 9 illustrate the evolution of server energy efficiency measured using the 
SERT 2 metric across different CPU configurations from 2015 to 2023.  

In the single CPU segment, there is a notable upward trend in efficiency scores, starting from 
approximately 10 points in 2016 and reaching peaks of around 55 points in 2021, followed by a 
moderate decline to approximately 40 points by 2023 which is comparable to the trends in the 
previous sections. As in previous graphs, the individual servers (grey dots) show considerable 
variance, particularly during the 2020-2023 period, ranging from about 10 to 80 points.  
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Figure 9: SERT 2 efficiency for single-CPU servers (left), dual-CPU servers (right) and servers with more than two CPUs 
(bottom), the smoothened maximum power consumption from above is shown as dashed grey line. 

The dual CPU server category exhibits a similar but more pronounced pattern of improvement, 
with efficiency scores initially around 15 points in 2016, rising to approximately 60 points at their 
peak in 2022. This category shows the highest individual measurements, with some servers 
achieving scores above 90 points in 2023. The data points display significant dispersion, 
particularly from 2020 onwards, indicating substantial variability in efficiency among different 
server models. The exponential trend line suggests a consistent improvement rate, albeit with 
more pronounced fluctuations in the average scores as compared to single CPU systems. 

The multi-CPU server segment, depicted in the second image, has a more moderate efficiency 
progression. Starting from around 10-15 points in 2015-2016, these systems show a gradual 
increase to approximately 47 points by 2023. Individual measurements in this category exhibit 
less extreme variation compared to single and dual CPU systems, though there are notable 
outliers, particularly in 2023, with some systems reaching efficiency scores above 80 points. It is 
remarkable that the top systems all contain a CPU from AMD (see Figure 10). 
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Figure 10: SERT 2 efficiency for all types (single-, dual- and multiple CPU), that shows that the top performing Servers 
in terms of energy efficiency all have AMD CPUs 

Across all three categories, the exponential trend lines indicate a consistent improvement in 
energy efficiency over the observed period, though the rate and pattern of improvement vary 
significantly between CPU configurations. As shown in Figure 9, the current SERT 2 results of 
single-CPU, dual-CPU, and multi-CPU servers are relatively similar. The relative gains between 
2017 and 2022, however, seem to be highest for the dual-CPU systems, as also shown by the 
individual trendlines.  However, due to the relatively small number of individual measured 
values in the segments, there is a high level of uncertainty here. 

4.2 Accelerated computing (GPUs and TPUs) 
As discussed in Section 3.3, we analyze throughout this section mainly two performance 
indicators (and subsequently the correspondingly derived efficiency indicators) for GPUs: FP32 
and FP16/BF16.  

We additionally distinguish between FP16 performance with tensor cores and without tensor 
cores. As will be discussed further down, the advent of tensor cores with the Nvidia Volta GPU in 
December 2017 was one of the pivotal moments in GPU performance for deep learning. Tensor 
cores are specialized processing units designed specifically for the matrix operations used in 
deep learning. They dramatically accelerated training and inference for neural networks. 

Because deep learning are major drivers of data center demand, there is hardly any GPU without 
tensor cores (or its equivalent for other companies, e.g. “matrix cores” for AMD) today. It 
nevertheless makes sense to still follow the development of FP16 performance and efficiency 
without (or with disabled) tensor cores not only for historic reasons, but also to isolate the 
performance contribution of tensor cores from all the other contributing factors. For some 
GPUs, either manufacturers or third-party sources18 still devise the performance abstracting 
from the tensor cores. All in all, three performance and efficiency indicators will be devised 
throughout this section: FP32, FP16/BF16 abstracting from the tensor cores, and FP16/BF16 
considering the contribution of tensor cores. 

 
18 See e.g. this source for Nvidia’s H100 GPU: https://www.techpowerup.com/gpu-specs/h100-sxm5-96-
gb.c3974. 
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4.2.1 Performance 
Figure 11 shows the mean annual FP32 performance together with the individual FP32 
performance values. While from 2014 to about 2019, there was incremental growth, from about 
mid-2020 on, accelerated performance growth can be seen, although FP32 performance is no 
longer a priority for most GPUs which are optimized for lower or mixed precisions.  

This growth is partially explained through general technological advancements, partially by the 
fact that from about 2020 on, there was also a substantial growth in power consumption / TDP 
(see Figure 14). FP32 thus did not grow as fast as FP32 performance; see Figure 15. 

The outlier in Figure 11 is Nvidia’s GB200 superchip, which contains two Blackwell B200 GPUs 
and one Grace ARM CPU (a “superchip” being defined as the combination of GPUs and CPUs on 
a single chip, such as the Grace-Hopper superchip comprising one Grace CPU and one Hopper 
GPU or the more recent Grace-Blackwell superchip comprising one Grace CPU and two 
Blackwell GPUs).  

 

Figure 11 Mean annual FP32 performance [TFLOP/s], raw and smoothened as well as the individual FP32 
performance values for all GPUs and TPUs from Table 2 that indicate it. 

The trends of the FP16 performance, indicated in Figure 12, look much noisier. The main reason 
is that for 2022, only data for two GPUs were available: Intel’s Habana Gaudi 2, launched in May 
2022, and Nvidia’s Ada Lovelace L40 GPU, launched September 2022; both relatively low-
power, low-performance GPUs.  

This sparse data for 2022 skewed the results, causing the downwards dent in the blue line on 
the left part of Figure 12. The smoothened orange line reflects the trend better; however, both 
trendlines hide a bit the partially spectacular performance improvements from mid-2020 on. 
The right side of the figure was therefore included, which only shows the individual FP16 
performance values. As highlighted in the figures, from mid-2020 on, substantial FP16 
performance growth took place for some of the GPUs. As for FP32 before, part of this growth is 
due to an increase in TDP; hence, the efficiency gains were not quite as high. 

Another reason, however, is that GPU design was more and more geared towards half-precision 
(i.e., FP16) and even lower precisions and away from single-precision (FP32) and higher. The 
FP16 performance, which used to be double the FP32 performance, decoupled from it, growing 
faster. Accounting for the influence of tensor cores strengthens the effect, as argued below.  
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Figure 12 Left: Mean annual FP16 performance [TFLOP/s], raw and smoothened, as well as the individual FP16 
performance [TFLOP/s] values for all GPUs and TPUs from Table 2 that publish it, whilst abstracting from the 
influence of tensor cores. Right: Only individual FP16 performance values. While the existence of low-performance 
(and typically low-power) chips persists, from mid-2020 on, many of the GPUs show substantial FP16 performance 
gains (highlighted). 

The left side of Figure 13 shows the mean annual FP16 performance, as well as the individual 
performance values, with the effect of tensor cores included. Since 2023, there has been a GPU 
performance explosion for all the main manufacturers and their GPUs Habana Gaudi 3 (Intel), 
Instinct MI300 and MI300x (AMD) as well as the Hopper and Blackwell generations from Nvidia. 
When considering the performance of the Grace-Hopper and Grace-Blackwell superchips (also 
considered in Figure 13, left), this effect becomes even stronger (the outlier at 5000 TFLOP/s, in 
fact, is the GB200 superchip). As compared to Figure 12, the downwards dent in 2022 (due to 
sparse data for that year) is now barely noticeable; so fast does the FP16 (with tensor cores) 
performance grow in 2023 and 2024. For the decade 2014-2024, the average annual growth rate 
of the FP16 performance was 80%, with an accelerating trend lately. 

  
Figure 13 Mean annual FP16 performance [TFLOP/s] (raw and smoothened) as well as the individual FP16 
performance values for all GPUs and TPUs from Table 2; tensor cores included (left), and comparative performance 
development for FP16 w/ tensor cores, FP16 w/o tensor, and FP32 (right, all TFLOPs, smoothened). 

R² = 0.3838

0

100

200

300

400

500

600

700

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025

FP
16

 p
er

fo
rm

an
ce

 in
 T

FL
O

P
/s

 p
er

 W
at

t

mean FP16 perf. smoothened

individual FP16 perf. Expon. (individual FP16 perf.)

0

100

200

300

400

500

600

700

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024

FP
16

 p
er

fo
rm

an
ce

 in
 T

FL
O

P
/s

 p
er

 W
at

t

individual FP16 perf.

R² = 0.5826

0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

4,500

5,000

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025

FP
16

 p
er

fo
rm

an
ce

 in
 T

FL
O

P/
s 

mean FP16/BF16 tens perf smoothened

ind. FP16/BF16 tens perf Expon. (ind. FP16/BF16 tens perf)

0

200

400

600

800

1,000

1,200

2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025

FP
16

 p
er

fo
rm

an
ce

 in
 T

FL
O

P
/s

 

mean FP16/BF16 tensor perf. mean FP16/BF16 perf.

mean FP32 perf.



27 
 

 

Finally, the right side of Figure 13 compares the mean performance growth of FP32, FP16 
without the influence of tensor cores, and FP16 with tensor cores considered. It is evident how 
the advent of tensor cores decouples the growth in performance from the other, much more 
moderate developments. 

4.2.2 Power consumption 
Figure 14 shows the evolution of the Thermal Design Power (TDP) of GPUs and TPUs over the 
last decade. As mentioned earlier, the TDP is used as proxy for the power consumption of chips 
at maximum load, although the actual value might differ (Govind et al. 2023). As can be seen 
from the upper left part of Figure 14, the TDP was fairly constant for the period 2013 – 2020. 
There were mainly two categories of GPUs, most with a TDP of 200-300W, and some lower-
power, lower-performance ones (but typically more efficient) with a TDP of 72 – 150W.  

  

 
Figure 14 Individual TDPs [Watt] for GPUs and TPUs (upper left), the same but including superchips (upper right), and 
mean TDP for each year, raw and smoothened (lower part). 
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In late 2020, however, chips with dual the TDP (i.e., 550 – 600W) emerged. From that moment 
onward, the TDP kept growing towards 1kW, and the new norm seems to be 600 – 1,000W, as 
highlighted in the upper left corner of Figure 14, there’s hardly any new GPUs now with a lower 
TDP. Accounting for superchips as well (right upper part of Figure 14), this range extends to the 
1200W of the Grace-Hopper superchip (comprising one Hopper GPU and one Grace CPU with 
TDPs of 900W and 300W, respectively) and in particular the 2.7kW of the recent Grace-
Blackwell GPU, which comprises two Blackwell GPUs and one Grace CPU, with TDPs of 
2*1200W and 300W, respectively). 

The lower part of Figure 14 presents the development of the mean TDP over this last decade. As 
expected from the individual values presented before, the curve is first quite flat, in 2020 it 
starts growing rapidly, and shoots up for the last two years. Due to these two quite distinct 
phases, one single trendline can only do a poor job in approximating this development.  

4.2.3 Efficiency 
As defined in Equation 7, relating performance and power consumption / TDP yields the 
efficiency for each GPU and TPU. While the TDP is a invariable of the chip, the performance 
depends on the indicator chosen, as thoroughly discussed in Section 4.2.1. Corresponding to 
the three performance indicators chosen, there are thus also three different efficiency 
indicators, that all need to be addressed: FP32 efficiency, FP16/BF16 without tensor cores, and 
FP16/BF16 with tensor cores efficiencies.  

  
Figure 15 Left: FP32 efficiency development [GFLOPs/Watt] over time; all three outliers are the relatively low-power, 
low-performance, but very FP32-efficient Nvidia Ada Lovelace GPU generation. Right: Development of the mean FP32 
efficiency, raw and smoothened. 

Figure 15 presents the development of FP32 efficiency. Except for a few outliers, its left part 
shows constant, incremental efficiency gains at a steady, good pace. The highlighted outliers 
are all from the 2021-2022 Ada Lovelace generation of Nvidia GPUs, which are low-power and 
low-performance, but very FP32-efficient. The right side of the figure shows the development of 
the mean FP32 efficiency, both raw and smoothened. The 2024 dip is certainly partly explained 
by sparse data available for the latest chips (Google, for example, released only performance 
data on versions 5e and 5p of its TPUs, but no power consumption or TDP data; the efficiency 
can thus not be determined. But it is probably also explained by the fact that focus in ML is 
shifting away from single precision towards half precision, mixed precision, or even lower 
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precisions. The newest Nvidia GPU generations Hopper and Blackwell, for example, have less 
FP32 efficiency than the previous Ada Lovelace generation. 

As can be seen in Figure 16, for the period 2013 – 2020, the FP16/BF16-efficiency (without the 
contribution of tensor cores) experienced incremental increases along the tendency of the 
FP32-efficiency. Given its half precision as compared to FP32 (16 bits instead of 32), the FP16-
performance (and thus efficiency as well) had traditionally been twice the FP32-efficiency. This 
is highlighted in the lower part of the left side of Figure 16. From late-2020 on, the increasing 
design for half precision and mixed precision ML training saw the FP16 representation 
increasingly being displaced by the BF16 representation, and in parallel a decoupling of the 
FP16/BF16 efficiency from the FP32 one. Compared to its predecessor, for example, the FP32 
performance of the AMD MI100 GPU grew by 75%, while the FP16 performance grew by 300%. 
The same 4-fold growth difference reflected in the respective efficiency gains, showing the 
decoupling of FP16/BF16 from FP32. 

Given this decoupling and substantial growth of the FP16/BF16 efficiency, the graph on the right 
side of Figure 16 might at first glance seem paradoxical. With ups and downs due to sparse data 
in 2022, the FP16/BF16 efficiency seems to have stalled since 2021, and perhaps even 
regressing now. Even the smoothened curve seems to have flattened out and now perhaps 
going down. This of course did not happen, and the explanation behind this seeming paradox is 
more pragmatic: As a dominating part of computing loads are for deep learning, the non-tensor 
FP16/BF16 performance starts being so irrelevant in the DC / HPC domain that manufacturers 
stopped devising it. It is only sporadically devised for lower-end chips, which of course skews 
the results. As Figure 17 below shows, the development of the full FP16/BF16 efficiency 
(including the effect of tensor cores) is on the contrary quite impressive. 

  
Figure 16 FP16/BF16 efficiency [GFLOPs/Watt] without the contribution of tensor cores. Individual values (left) and 
evolution of the yearly mean, raw and smoothened (right). 

Accounting for the ever more important contribution of tensor cores substantially changes the 
picture. Ever since the first GPU with tensor cores appeared, it became evident that the impact 
of tensor on matrix operations (which are typical for numerous ML algorithms, and in particular 
for deep learning) would be vast. The first GPU to include tensor cores was Nvidia’s Volta V100 
in December 2017. It had a FP16/BF16 efficiency of 416.7 GFLOPs/Watt (125 TFLOPs 
performance at 300 W). Compared to its predecessor Pascal P100 from 1.5 years earlier, which 
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had an efficiency of 74.8 GFLOPs/Watt (18.7 TFLOPs performance at 250 W), it had an efficiency 
jump by a factor of 5.5 (or 450% increase).  

  
Figure 17 Full FP16/BF16 efficiency [GFLOPs/Watt], including the contribution of tensor cores. Individual values (left), 
highlighting the contribution of TPUs (blue dots) and tensor cores (orange dots, as opposed to GPUs without tensor 
cores in grey), and evolution of the yearly mean, raw and smoothened (right). 

On the left side of Figure 17, this jump is highlighted. The small circle encloses the first GPU and 
first TPU, respectively, of this new wave of efficiency: Nvidia Volta V100 (December 2017, 416.7 
GFLOPs/Watt) and Google’s v3 TPU (May 2018, 469.5 GFLOPs/Watt). Today’s top value is 
around 2,500 TFLOPs/Watt (Nvidia Blackwell). Overall, in the 7 years between 2017 and 2024, 
the top GPU/TPU FP16/BF16 efficiency grew by a factor of about 25, from around 100 to 2,500 
GFLOPs/Watt.  

This also reflects in the evolution of the yearly mean values of the full FP16/BF16 efficiency 
shown on right of Figure 17: With the exception of the 2022 dent due to sparse data, the mean 
grows strongly; a growth that has even been accelerated over the past two years. The advent of 
superchips is less important for efficiency than for performance: While putting two Blackwell 
GPUs together duals the performance of the superchip, it also duals its TDP, with a neutral 
effect on the efficiency. By contrast, as also shown in Figure 18, tensor cores and algorithms 
that are being optimized for them, have an important influence.  Overall, the mean FP16/BF16 
efficiency grew from 36.5 GFLOPs/W in 2014 to 2018.7 GFLOPs/W in 2024, yielding a compound 
annual growth rate (CAGR) of 49% over this decade.  

In a similar analysis, which also considered individual GPU and TPU performance values and 
related them to the TDP as proxy for the peak power consumption, (Hobbhahn, Heim, and Aydos 
2023) reach a different result. The report concludes that the performance and efficiency of 
accelerators doubled every 2.3 and 2.7 – 3 years, respectively, corresponding to performance 
and efficiency CAGRs of 35% and 26-29%, respectively. By contrast, our results indicate 80% 
average yearly performance increases (see Section 4.2.1) and 49% yearly efficiency growth, as 
discussed above. These differences are explained through three main differences in scope:  

i) the period under scrutiny, 2010-2023 vs. 2014-2024, with a relatively flat curve before 
2015 and the most substantial jumps taking place over the past two years,  

0

500

1,000

1,500

2,000

2,500

3,000

2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024

FP
16

/B
F1

6 
ef

fi
ci

en
cy

 in
 G

FL
O

P
/s

 p
er

 W
at

t

GPU with tensor GPU w/o tensor cores TPU

R² = 0.6785

0

500

1,000

1,500

2,000

2,500

3,000

2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024

FP
16

/B
F1

6 
ef

fi
ci

en
cy

 in
 G

FL
O

P
/s

 p
er

 W
at

t
mean FP16/BF17 tens. eff. smoothened

ind. FP16/BF16 tens. eff. Expon. (ind. FP16/BF16 tens. eff.)



31 
 

ii) the different GPU set under consideration, a larger set of GPUs which includes e.g. 
Nvidia’s GeForce RTX series in (Hobbhahn, Heim, and Aydos 2023), while we only 
considered GPUs for DCs and HPC, as shown in Table 2), and  

iii) the metrics defined for FP32 vs. FP16/BF16 precisions, respectively, with diverging 
trends, as shown in Figure 18. 

 

Figure 18 Compared development of all three efficiencies [GFLOPs/Watt]: FP32, FP16/BF16 without tensor cores, 
and full FP16/BF16 with sensor cores.  

4.3 ASICs 

4.3.1 Performance 
As described in section 2 already briefly, ASICs (Application-Specific Integrated Circuits) are 
highly specialized hardware designed for specific tasks, like the cryptographic computations in 
Proof of Work (PoW) blockchains such as Bitcoin. In cryptocurrencies, ASICs are optimized for 
the hashing algorithms used to solve complex mathematical puzzles (e.g., Bitcoin’s SHA-256). 
Their efficiency makes them highly relevant because they dramatically outperform general-
purpose hardware, like CPUs and GPUs, in mining. 

However, ASICs contribute significantly to the high energy consumption in PoW blockchains. 
Mining, which involves solving cryptographic puzzles, is the most energy-intensive part of PoW, 
far outweighing the energy used for network communication or transaction validation (Coroamă 
2021). Since miners compete to solve these puzzles faster, the combined computational power 
(and energy consumption) of the network grows, which in turn leads automatically (every two 
weeks) to an increase of the difficulty to solve a block (ensuring, that on average one block is 
solved every 10 minutes).  

The diagram in Figure 19 illustrates the exponential growth in mining hardware performance 
measured in TH/s (Terahashes per second) from 2014 to 2024. The data points (individual 
values, shown as gray dots) demonstrate a slight variance around the average trend line (shown 
in orange), with performance values escalating from approximately 1 TH/s in 2014-2015 to over 
400 TH/s by 2024. 
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This remarkable performance increase can be attributed to several technological 
advancements in ASIC design and manufacturing processes like extreme ultra-violet (EUV) laser 
lithography systems. The primary drivers are similar to those of CPUs and GPUs, i.e. the 
transition to smaller semiconductor process nodes (from 28nm down to 5nm and below), 
enhanced chip architecture efficiency, improved power delivery systems, and more 
sophisticated cooling solutions. The exponential growth pattern aligns with Moore's Law-like 
scaling in the semiconductor industry, though specifically optimized for the SHA-256 hashing 
algorithm used in cryptocurrency mining. 

4.3.2 Power 
This power consumption trend in Figure 20 reveals several interesting patterns. The data shows 
a general upward trend in power consumption from approximately 500W in 2014 to around 
5500-6000W by 2024, though this increase is notably more linear compared to the exponential 
performance growth observed in the previous graph. 

The graph illustrates the power consumption of a range of devices, from home miners to 
professional hardware. It is evident that multiple devices operate at a level just below the 
3680 W limit, which is a typical design limit for one electrical socket in many regions, such as 
central Europe. This limit is determined by the fuse capacity of the socket, which typically is 
230 V x 16 A = 3680 W.  

Furthermore, the growth in power consumption demonstrates that the aforementioned gains in 
performance are not solely attributable to miniaturization (Moore's and Dennard's laws). They 
also result from parallelization, which entails the integration of multiple chips (or larger chips) 
into a single device, albeit at the cost of higher power consumption. 
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4.3.3 Efficiency 
The trend in Figure 21 demonstrates a clear exponential improvement in energy efficiency, 
increasing from approximately 0.002 TH/W in 2014 to about 0.075 TH/W by 2024 - representing 
roughly a 37-fold improvement over this decade. 

The exponential nature of the efficiency gains (as indicated by both the orange average line and 
blue exponential trend line) can clearly be seen in the case of mining hardware, which might be 
also due to their very specific purpose. This efficiency improvement suggests that 
manufacturers have successfully leveraged advances in semiconductor technology, achieving 
better performance per Watt through: 

• Process node shrinks (progression to smaller fabrication technologies) 
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• New chip architectures and system-of-chips/chiplets to better adapt chip structures to 
specific workloads 

• Improved thermal management 

The scatter of individual data points shows increasing variance in later years, indicating a wider 
range of design approaches and technical solutions in the market. This diversity likely reflects 
different optimization strategies among manufacturers, with some achieving breakthrough 
efficiency levels while others maintain more conservative designs. 

The sustained exponential growth in efficiency also suggests that, despite the maturity of SHA-
256 mining hardware, significant technological headroom still exists for further improvements, 
though perhaps with diminishing returns as fundamental physical limits are approached. 

This development also leads to an ever-decreasing energy consumption per computation 
overall in the network. The Cambridge Centre for Alternative Finance estimates the total energy 
use by bitcoin and Ethereum (CBECI 2024), but also the average energy used to provide one 
Terahash of computations in the bitcoin network (Figure 22).  
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5 Discussion: Technological developments leading to the 
past efficiency gains 

After the quantitative results presented throughout Section 4, the current section discusses the 
factors identified as main contributors to these performance and efficiency gains. Unlike 
Section 4, however, this section is not structured along server types (i.e., general-purpose, AI, 
and crypto servers), but aims at uniting these different server types and finding the common 
trends that led in the past to their respective performance and efficiency gains (while also 
highlighting the difference and retaining some aspects thar are specific to specific server types). 
Instead, this section is structured after the main factors influencing the energy efficiency of 
servers (as physical devices in a narrower sense) as shown in the beginning of this document in 
Figure 1. It thus addresses logical processing units / chips (Section 5.1), memory (Section 5.2), 
storage (Section 5.3), a specific deep dive into AI-specific architecture (Section 5.4), power 
management (Section 5.5), cooling (Section 5.6) as well as a discussion on the relation between 
hardware refreshment cycles and the pace of efficiency gains (Section 5.7). 

5.1 Logical processing unit 
Smaller Lithography Nodes + Advanced packaging / 3D packaging/3D ICs 

Probably the most critical factor in improving energy efficiency regarding computing 
technologies are the advances in semiconductor manufacturing processes. As chips are 
produced using smaller process nodes – such as the shift from 14nm to 7nm or 5nm 
technologies – multiple effects affect the power consumption. For example, a lower operating 
voltage is needed to switch transistors, which leads to lower power consumption. Also, the size 
of the transistors affects the leakage current, which further reduces the power consumption. 
Finally, the miniaturization of the transistors has led to a significantly reduced power use per 
computation.   

Such advances in miniaturization are primarily achieved through improved production 
processes. Major progress has been made in the last decade by switching to light with ever 
shorter wavelengths in photolithography processes, known as extreme ultraviolet lithography. In 
recent years, further challenges have arisen in miniaturization and manufacturers have 
achieved this through improved optical instruments, in particular higher numerical aperture. 
Whilst the aperture can in principle be achieved by increasing the size of mirrors etc., problems 
arise at the same time due to increased angles and the loss of reflection from the mask. This 
problem can be countered by using anamorphic optics, which reduce the size of the pattern to 
be printed more in one direction than in the other (Christine Middleton 2024). 

3D stacked ICs (3d packaging)  

For a few years now, new chip designs have been available that stack the cache directly above 
or below the computing unit (CPU/GPU). In principle, independent chips are placed on top of 
each other and connected to each other by electrically conductive contacts. Due to the 
shortened paths, both the latency between memory and CPU can be greatly reduced as well as 
the electrical power dissipation due to the shorter paths and thus resistors and capacities (AMD 
2024; KJ Jacoby 2023).  
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ARM-based chip architectures in servers 

ARM processors were initially designed for mobile devices (smartphones, tablets) where battery 
life is paramount. This design heritage has ingrained a focus on power efficiency from the 
ground up. Every aspect of ARM processors is optimized to minimise power consumption. By 
contrast, x86 processors, while also improving in efficiency, historically prioritized raw 
performance. The core of ARM's efficiency lies in its RISC design philosophy. RISC processors 
use a smaller, simpler set of instructions. Each instruction typically performs a single, well-
defined operation. This contrasts with x86's CISC (Complex Instruction Set Computing) 
architecture, which has a much larger and more complex instruction set. It can't be stated in 
general that every software on ARM processors has a lower energy consumption and is 
therefore more energy-efficient to operate. However, some research results in recent years 
(Simili et al. 2022; Tahmid Noor Rahman, Nusaiba Khan, and Zarif Ishmam Zaman 2024) as well 
as the relatively cheap and huge offer of some hyperscalers (Patrizio 2025) suggest that ARM 
processors have the potential to increase energy efficiency.  

5.2 Memory 
Memory has seen significant improvements over the past decade, both for CPUs and GPUs. 
While significant leaps positively affected the compute performance, some novelties were 
beneficial for the power consumption as well. The joint effects of substantial performance gains 
and decreasing (or stagnating, or at the very least not proportionally increasing) power 
consumption combined into quite a spectacular effect on compute efficiency. 

As already mentioned in Section 4.1.1, with the rise of data-intensive applications, there's a 
growing need for faster, larger memory. Newer memory such as DDR4 and DDR5 boost speed 
and cut lag for quicker CPU data access.  Better memory management optimizes how this works 
with large datasets, which is key for Java and the SSJ benchmark.  

This performance boost, however, also comes with increased energy consumption, especially 
when memory is fully utilized. To counter this undesired effect at least to some extent, each 
generation of DDR memory works at a lower voltage. While the first-generation DDR required 
2.5V, DDR4 works at 1.2V and DDR5 at 1.1V.19 Additionally, both DDR4 and DDR5 memory 
technologies incorporate sophisticated deep power-down modes specifically designed to 
minimize energy consumption during periods when the memory is not actively engaged in data 
access operations. DDR 5 Modules for servers now use voltage converters on the DIMM, 
reducing the resistance losses for the low voltage power transport (a similar but less extreme 
approach as the vertical voltage conversion of 48 V within the chip package; described in 
Section 6.3 below) (Lenovo 2024).  

DDR prioritizes low latency and all-around performance and is the memory of choice for general 
purpose computing. For GPUs, however, the main priority is the high bandwidth demands of 
graphics processing (initially) and ML algorithms (today). Hence, the DDR version optimized for 
the high bandwidth required by GPU applications is called GDDR (“graphics dual data rate 
synchronous dynamic random-access memory”). It has a wider memory bus and higher clock 
speeds than DDR, allowing it to transfer data to the GPU very quickly.20 However, it typically has 
higher latency (delay) than DDR RAM.  

 
19 See https://www.corsair.com/us/en/explorer/diy-builder/memory/is-ddr5-better-than-ddr4/. 
20 See https://www.exxactcorp.com/blog/hpc/gddr6-vs-hbm-gpu-memory. 
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GDDR, which is currently in its 6th iteration GDDR6, has been the standard GPU memory since 
GPUs were used for their initial graphics purpose, before being deployed for AI applications. The 
matrices that are being multiplied in ML algorithms, however, and especially for the huge 
models that are being trained today (for generative AI and beyond) require even more bandwidth 
than traditional graphics applications. For the GPUs deployed in high-performance machine 
learning, GDDR is thus increasingly replaced by a new type of GPU-specific RAM, called “high-
bandwidth memory” (HBM).  

By contrast to traditional DDR or GDDR, HBM stacks several layers of RAM vertically (Patel, Xie, 
and Wong 2023). The stacked DRAM dies are linked by tiny electrical connections called 
Through Silicon Vias (TSVs) and bonded together. At the base of this stack sits a logic die that 
acts as a controller, managing the flow of data. This stashing is based on a fairly novel “2.5D” 
layering technique called CoWoS, “Chip on Wafer on Substrate” (Patel, Xie, and Wong 2023).  

The HBM memory is also typically placed all around the GPU. Both measures aim at maximizing 
bandwidth, while at the same time minimizing trace lengths. The latter “measure in millimeters 
for HBM vs cm for GDDR and DDR” (Patel, Xie, and Wong 2023). Higher bandwidth and short 
transmission paths each contribute to a vastly improved performance. A desired side-effect of 
the former is also the massively improved energy efficiency of the data transfer, which next to 
the increased performance further contributes to efficiency gains. 

Lower power consumption (or at least less rapid power consumption growth) through closeness 
to the GPU has also been the reason for developing HBM in the first place. It was originally 
developed in 2013 for AMD, and not for ML algorithms but for computer graphics. In 2008, AMD 
had predicted that constantly increasing memory bandwidth to keep up with gaming GPU 
performance would require so much power that it would hinder the GPU's processing 
capabilities, ultimately hurting overall performance. It hence approached its suppliers to 
develop a higher-bandwidth, more energy efficient memory, which ultimately resulted in the 
development of HBM in 2013 (Patel, Xie, and Wong 2023).  

The first HBM was deployed in AMD's Fiji gaming GPUs in 2015, followed by the Vega series with 
HBM2 in 2017. However, HBM didn't significantly boost gaming performance and, due to its 
higher cost, AMD reverted to GDDR. Even today, the top gaming GPUs still use the more 
affordable GDDR6. While AMD was right that scaling memory bandwidth is challenging, this 
issue primarily affects data center GPUs. For consumer gaming, Nvidia and AMD now typically 
use large caches, allowing them to stick with lower-bandwidth GDDR memory. 

GPUs in DCs, however, increasingly deploy HBM. All recent and current high-performance GPUs 
and TPUs use HBM memory: AMD’s Radeon Pro V340 (August 2018) and Radeon Pro VII (June 
2020), AMD’s Instinct series (MI25 from June 2017,  MI50 and MI60 from November 2018, MI100 
from November 2020, MI210, MI250 and MI250x from November 2021, MI300 from January 
2023, and MI300x from December 2023), all of Google’s TPUs since v3 (May 2018) and all of 
Nvidia’s Tesla (June 2016), Volta (December 2017), Pascal (May 2020), Hopper (March 2023), 
and Blackwell (March 2024) GPU series.  

HBM is clearly necessary for the best possible GPU performance nowadays. While its short 
traces are indeed beneficial for energy efficient communication within the GPU, the sheer 
amount of memory (e.g., 192 GB in both AMD’s Instinct MI300x and Nvidia’s Blackwell B200 
GPUs) also affects of course the overall power consumption, and thus also the efficiency. 
Hence, some of the less performant but also much more energy-frugal DC GPUs, such as the 
Nvidia’s Ada Lovelace series (September 2022 – March 2023) continue using GDDR6 memory.  
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5.3 Storage 
The most remarkable technology shift in data storage within the last decade was surely the shift 
towards non-moving SSD storage. Although in end-user devices SSDs are dominating the 
market, in DCs HDDs are still widely used according to a large storage provider (Herreria 2024). 
Both technologies usually consume roughly 5-15 Watt per device. SSDs have a great advantage 
in latency-sensitive applications, at random data access. Also, applications with very high I/O 
requirements, for which traditionally multiple (parallel) HDDs were used can be handled by 
SSDs usually much more energy efficient. These requirements are often needed in cloud 
environments with multiple virtual machines on one physical server, where the much faster 
access to random data brings a huge advantage to the various applications. Other, less frequent 
and more sequently written/read data can be handled still very efficiently on HDDs.  

5.4 Deep dive: Microelectronic architectures tailored for machine learning  
A substantial part of the DC growth today, both in terms of compute loads and resulting energy 
consumption, is due to ML training and inference (Google 2024; Microsoft 2024). As discussed 
in Section 2.3.2, over the past 20 years and taking advantage of the GPGPU paradigm, GPUs 
have seen a radical change of main usage from computer graphics to machine learning, and in 
particular deep learning algorithms.  

Taking Nvidia as case study, this started in 2007 with the manufacturer’s Tesla line of DC- and 
HPC-grade GPUs. Tesla GPUs were built until 2020, with numerous sub-generations such as 
Tesla Fermi, Tesla Kepler, Tesla Maxwell, Tesla Pascal, Tesla Volta, and Tesla Turing.21 The Tesla 
line gradually became more focused on high-performance computing (HPC) and machine 
learning. Around 2012, with the Kepler architecture, Tesla GPUs started incorporating features 
specifically designed for deep learning, like improved dual-precision performance and 
optimized memory access. The Pascal architecture, launched in 2016, marked a significant 
turning point.  With features like NVLink for faster GPU-to-GPU communication and improved 
deep learning performance, Pascal GPUs (such as the Tesla P100) were widely adopted for AI 
research and development. 

Volta, launched in 2017, introduced tensor cores, specialized processing units designed 
specifically for the matrix operations used in deep learning. The substantial efficiency benefits 
of tensor cores for the matrix operations typical for ML algorithms have been addressed in 
Section 4.2. While this study calls them “tensor cores” using the Nvidia’s terminology (the 
company that first introduced them), all other major manufacturers use similar concepts. AMD, 
for example, uses the term “matrix cores”, and introduced them November 2020 with the 
Instinct MI100 GPU and along the novel CDNA architecture.22 

The Ampere series (2020) and the more recent Hopper and Blackwell series (2023 and 2024, 
respectively) further enhanced deep learning capabilities with features like multi-instance GPU 
(MIG) for improved resource utilization and transformer engine for accelerating transformer 
models. MIG is a technology developed by Nvidia that allows a single physical GPU to be 
partitioned into multiple smaller, isolated virtual GPUs, each with its own dedicated resources 

 
21 See https://de.wikipedia.org/wiki/Nvidia_Tesla. 
22 See https://en.wikipedia.org/wiki/CDNA_(microarchitecture) and 
https://www.amd.com/en/technologies/cdna.html. 
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such as memory, compute cores, and cache.23 This allows multiple workloads to run 
concurrently on a single physical GPU, improving resource utilization and efficiency. 

Google’s TPUs, meanwhile, use the same terminology of “tensor cores” as Nvidia, but referring 
to a different (albeit increasingly converging) concept. While this study addressed TPUs jointly 
with GPUs, they are in fact application-specific integrated circuits (ASICs), albeit specific not to 
performing hashes such as the ASICs discussed in Section 4.3, but for machine learning.24  

Driven by the increasing computational demands of their AI models for various services, Google 
started exploring specialized hardware for machine learning around 2013 (Gartenberg 2024). 
Realizing that CPUs and even GPUs were becoming a bottleneck for the rapidly growing AI 
workloads, Google designed and deployed its first-generation TPUs internally in 2015. They were 
specifically tailored for the TensorFlow framework and optimized for inference. Publicly 
revealing their existence in 2016, the second-generation TPUs was launched in 2017, with 
enhanced performance for both training and inference. Via Cloud TPU, the technology also 
became available for external users via Google Cloud.  

Although using the terminology “tensor cores”, being a purpose-built ASIC, the entire TPU is 
essentially a tensor core in itself; a dedicated processor specifically designed for tensor 
operations, the fundamental building blocks of deep learning.  A TPU does not have separate 
tensor cores within it, as a GPU does; the whole chip is optimized for that purpose. The key 
components of a TPU are:  

• Matrix Multiply Unit (MXU): The heart of a TPU, responsible for performing high-speed 
matrix multiplications. It is analogous to Nvidia's tensor cores, but represents a more 
central part of the TPU's design. 

• Vector Unit: Handles other vector computations and mathematical operations. 
• Scalar Unit: Manages control flow and other scalar operations. 

Intel follows a similar paradigm to Google: Its Habana ML processors (from the acquired 
company Habana Labs) are dedicated processors specifically developed for machine learning. 
The main product lines (Gaudi processors for training, and Greco processors for inference, 
respectively) are complete processors, not just specialized cores within a larger GPU. Within the 
Gaudi and Greco processors, there are dedicated hardware blocks for matrix multiplication and 
other tensor operations, like Google's MXUs. 

As can be seen from this discussion, addressing GPUs and TPUs together stood to reason: They 
not only converge in their aim (i.e., machine learning loads), but also the architectures grow 
increasingly similar, with their focus on fast matrix operations.  

At the same time, as discussed in Section 4.2, there was also substantial algorithmic and data 
representation progress over the past decade. Lower precisions substituted higher ones, 
trading precision for speed and amount of ML computing. Their analysis is not directly part of 
this study, which focuses on the technological efficiency, excluding software enhancements 
from its scope (See Table 1). Had they been considered (e.g., the shift from FP32 to FP16/BF16 
with tensor cores and sparsity), then the overall performance gains would have been another 
order of magnitude or so larger. But even focusing solely on hardware-based efficiency, GPUs 

 
23 See https://www.nvidia.com/en-us/technologies/multi-instance-gpu/. 
24 See https://cloud.google.com/tpu/docs/intro-to-tpu. 
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and TPUs had performance and efficiency CAGRs over the past decade of 80% and 49%, 
respectively; a growth compatible with (and even superior to) Moore’s law. 

5.5 Power management 
Many servers are often poorly utilized when looking at a 24/7 average values. This is a great 
motivation to get closer to a so-called energy-proportionality in computing (Barroso and Hölzle 
2007). In servers, this is implemented through multiple approaches under the term “Power 
management” which recognize a low utilization and automatically reduce the capacity (e.g. 
frequency, voltage, active cores etc.) of a server, to save energy. The crucial part here is to be 
able to bring the capacities back within milliseconds, when required. Shehabi et al. (2024) 
assume (p.27) that the utilization of non-AI servers is still around 50% in hyperscale DCs, below 
30% in Colocation DCs and below 20% in all other data centers, which underlines the 
importance of power management.  

One of the most significant contributors to lowering the idle power consumption is the 
introduction of advanced power management techniques. Dynamic Voltage and Frequency 
Scaling (DVFS) plays a crucial role by allowing processors to adjust both their voltage and 
operating frequency according to the workload. When a server is idle or lightly loaded, DVFS 
reduces the power supplied to the processor, lowering energy consumption. Additionally, power 
gating is another essential technique that reduces power consumption by completely shutting 
off power to unused sections of the chip, such as inactive cores or memory controllers. This 
complements clock gating, which minimizes energy usage by halting the clock signal to inactive 
parts of the processor, reducing unnecessary switching activity within the circuits. 

Most servers nowadays reach very low levels of power, when in idle state. But at many servers 
the power consumption rises more than proportional, when there is just a very small task (this 
can also be seen in Figure 6 at 10%). It can be assumed that many efficiency mechanisms are 
activated in active idle and switched off at even low utilizations. This at least partially 
counteracts the goal of energy-proportional computing somewhat, as many servers often 
operate in the 5% to 50% utilization range. Nevertheless, it is a great achievement of such 
regulations, that idle power consumption has remained almost constant for many servers even 
with much higher rated power.  

The integration of smarter cache management systems has also contributed to energy savings. 
By optimizing how data is fetched and stored, modern processors reduce the need for costly 
memory access, which consumes far more power than on-chip cache operations. 

Power efficiency improvements in servers are also driven by energy-efficient peripheral 
technologies. For instance, modern memory and I/O systems have been designed with power-
saving modes that reduce energy consumption during idle periods. DDR4 and DDR5 memory, 
for example, include deep power-down modes that minimize power use when the memory is not 
actively being accessed. Similarly, PCIe interfaces support power management features like 
Active State Power Management (ASPM), which allows the I/O system to enter low-power states 
when idle. Additionally, the widespread adoption of solid-state drives (SSDs) over traditional 
hard disk drives (HDDs) has contributed to significant power savings. SSDs not only consume 
less power overall, but they also offer more advanced power management options. 

Moreover, software optimizations at the operating system and hypervisor levels contribute to 
lower idle power usage. Modern operating systems make use of advanced power states (such 
as the C-states in x86 processors), where processors can enter progressively deeper sleep 
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states as their workloads diminish. Software-driven workload balancing also helps minimize the 
number of active servers, consolidating tasks so that idle servers can be powered down or 
placed in deep power-saving modes. In larger data center environments, AI and machine 
learning algorithms are being employed to analyze workload patterns and optimize resource 
allocation, ensuring that servers consume only the power required for their workloads. 

5.6 Cooling of servers: The rise of liquid cooling 
As server processing power and especially density continue to grow, traditional air-cooling 
methods are reaching their limits in effectively removing the generated heat, calling for different 
methods of heat removal. Liquid cooling is such a paradigm, which leverages the superior heat 
transfer properties of fluids as compared to air. As name suggests, a liquid is used to capture 
and remove the heat from servers, liquid which can be either a dielectric (such as oil) in direct 
contact with the components or any refrigerant (including water) pumped through cold plates 
that are attached to the heat-generating components (Schneider Electric 2024).  

Liquid cooling is not a new idea. Its roots can be traced back to the mainframe era of the 1960s, 
with IBM’s enterprise-grade computer line System/360 deploying a hybrid cooling using both air 
and liquid cooling (Anghel 2023). And while individual prototypes and demonstrators kept 
popping up ever since – such as IBM’s Aquasar around 2010 (Zimmermann et al. 2012) – they 
remained until recently a niche product for specialized applications. As well-established, 
reliable and comparatively inexpensive technology that could scale well and has also become 
increasingly efficient, air cooling has dominated server cooling in data centers for decades. 

Air cooling, however, reaches its physical limits at a certain power density of servers, and thus 
of cabinets in DCs. While these limits were believed to be around 20-30 kW per cabinet until a 
decade ago, thanks to advances in air moving technologies within both servers and DCs, they 
were later pushed towards 40-50 kW per cabinet. This newer limit, however, could not be 
pushed further so far, as stated by the “American Society of Heating, Refrigerating and Air-
Conditioning Engineers” (ASHRAE TC9.9 2019) and confirmed by our interviewees.  

For accelerated computing in particular, however, this limit has long been surpassed. As 
discussed in Section 4.2.2, the TDP of GPUs has increased over the last decade from around 
300 W to 1-1.2 kW, while “superchips” consisting of both GPUs and CPUs can reach up to 2.7 
kW. Correspondingly, GPU clusters such as Nvidia’s NVL72 (which consists of 36 GB200 
superchips, i.e. unites a total of 72 Blackwell GPUs and 36 Grace CPUs)25 already surpass 100 
kW of power.  

As shown in Section 4.1.2, however, server CPUs also tend to require ever higher performance. 
Correspondingly, ASHRAE distinguishes three phases of CPUs in servers (ASHRAE TC9.9 2021):  

• In the single-core phase (2000-2010), the performance of CPUs increased slowly but 
steadily.  

• In the second phase of multi-core processors (approx. 2010-2018), performance 
increases were made possible by increasing the number of cores while distributing the 
same total power across more sources within the chip; this meant that power 
consumption was relatively constant. 

• Since around 2018, however, the third phase has begun, which has been suggestively 
named the “power wars era” (Lawrence 2024): now performance increases have to be 

 
25 See https://www.nvidia.com/en-us/data-center/gb200-nvl72/. 
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bought with more power. This leads to increased power density, inducing what ASHRAE 
calls a higher “degree of cooling difficulty” (ASHRAE TC9.9 2021), yielding in turn liquid 
cooling ever more likely.  

As liquid cooling is still a marginal phenomenon (our interviews indicated that it is well below 
5% of current orders), it is not an important factor in past efficiency gains. As Section 6.3 
discusses, however, it is likely an important future technology and thus a relevant factor for 
future efficiency trends. 

5.7 The pace of efficiency gains and hardware refreshment cycles 
The energy and environmental impact of hardware production is not within the system 
boundaries of this assessment, which focuses on the operational energy efficiency. However, 
the frequency of hardware refreshment cycles is directly relevant to the average server energy 
efficiency. Hence, this subsection discusses the relation between energy efficiency 
developments and hardware refreshment cycles. 

In past decades, rapid gains in processing power and energy efficiency supported frequent 
hardware upgrades, with organizations benefiting from lower operational costs and increased 
performance. Today, however, as advancements in CPU efficiency face diminishing returns, 
while at the same time the production of devices receives more intense economic and 
environmental scrutiny, the traditional economic and environmental advantages of frequent 
upgrades become less attractive. This shift prompts a reconsideration of refresh cycles, with 
longer intervals potentially yielding greater overall benefits by reducing manufacturing impacts 
and electronic waste. For general-purpose servers, which commonly power data centers, 
efficiency improvements continue, but at a reduced pace as compared to efficiency gains in the 
1990s or the early 2000s. The energy savings from newer chips are now smaller on a per-
generation basis, and when balanced against both financial and environmental costs of 
manufacturing, transporting, and installing new hardware, extended refresh cycles may prove 
more economically and/or environmentally favorable.  

The decreasing greenhouse gas (GHG) intensity of electricity in many regions further 
strengthens this argument. As electricity generation shifts increasingly toward low carbon 
power sources, the operational GHG emissions associated with data center power 
consumption decline, reducing the pressure to adopt more efficient hardware solely for 
emissions reduction. This trend suggests that existing hardware may remain in service longer, 
especially as incremental efficiency gains deliver smaller returns in terms of both cost and 
carbon savings. Consequently, in our interviews, the industry indicated that server lifespans 
have been lately expanded to 5-6 years, while just a few years ago they were in the range of 3-4 
years (Moss 2023). 

ASICs, being highly specialized for tasks like cryptocurrency mining or AI inference, represent a 
slightly different case. While these chips can quickly become obsolete due to rapid 
advancements in specific application areas (resulting e.g. in a decline in mining revenues), the 
principle of extending refresh cycles holds if energy efficiency gains per generation are modest. 
Furthermore, since the environmental impact of ASIC production can be considerable due to 
specialized manufacturing processes, longer refresh cycles may help mitigate the lifecycle GHG 
emissions associated with production. In scenarios where GHG emissions from electricity are 
low, extending the useful life of ASICs could prove environmentally beneficial, particularly if 
newer models offer limited efficiency improvements. 
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6 Outlook on future efficiency developments 
Estimating possible further developments of the efficiency drivers presented in Section 5 is 
crucial for understanding feasible overall developments of server energy efficiency. Based on 
literature review and expert interviews, this section discusses the developments which seem to 
some extent foreseeable. These developments, however, are of course uncertain. After some 
likely developments for the next years, some of the drivers might change substantially and 
entirely new ones might appear. 

6.1 Further potential in miniaturization 
The production of modern microchips is already an enormous technological feat. Nevertheless, 
EUV chip manufacturing processes using lasers with a wavelength of 13.5 nm still offer room for 
improvement, although there is still only one manufacturer, ASML, that is capable of producing 
such devices. China is in the process of investing heavily in research regarding EUV technology; 
it remains unclear, however, whether this will succeed, as ASML holds many patents and 
utilizes large number of international (mainly Western) suppliers and their innovations (Lovati 
2025).  

Within the EUV lithography systems, the focus is currently on improvement of the optical 
systems to increase the numeric aperture towards 0,55 (high-NA) and 0,75 (hyper-NA). The first 
EUV high-NA machines are in test operations, e.g. at Intel (Morescalchi 2024)and TSMC 
(Trueman 2024) and according to (van Monsjou 2025; via Paul van Gerven 2025) ASML is just 
about to ship manufacturing-capable high-NA devices. Whether efficiency gains are possible at 
the same pace for the future depends primarily on how quickly the new chip manufacturing 
processes are technically capable of producing large quantities of chips at marketable prices. 
As described above, further progress in miniaturization is likely in the near future, particularly 
through high-NA EUV (and later hyper-NA EUV). 

6.2 Further memory developments 
The number of stacked memory layers grew with the HBM generations. While the first version – 
HBM1, first deployed in 2015 – had up to 4 such layers, the second generation of HBM2 doubled 
the maximum number of layers to 8.26 The following HBM3 generation then had up to 12 layers27 
and the currently newest generation HMB 3e can stack up to 16 RAM layers.28 This trend towards 
more layers, however, is slowing down: The next-generation HBM 4 HBM4 is anticipated to 
feature the same 16 layers in its release29 most likely in 2026, while only from 2027 forward it 
might also feature 24 layers. Correspondingly, the memory increase is also moderate, from a 
maximum of 192 GB in HBM 3e to a maximum of 256 GB for HBM 4.30 To achieve this, HBM 4 will 
deploy 5nm technology. 

 
26 See https://www.jedec.org/news/pressreleases/jedec-updates-groundbreaking-high-bandwidth-
memory-hbm-standard. 
27 See https://news.skhynix.com/sk-hynix-develops-industrys-first-12-layer-hbm3/. 
28 See https://www.digitimes.com/news/a20240222PD215/sk-hynix-hbm-dram-2024-production.html. 
29 See https://www.jedec.org/news/pressreleases/jedec-approaches-finalization-hbm4-standard-eyes-
future-innovations. 
30 See https://www.tomshardware.com/tech-industry/preliminary-hbm4-specs-point-to-major-
performance-uplift-for-gpus. 
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Nevertheless, the current computer architecture is processor centric, a paradigm that can be 
traced back to John von Neumann’s seminal contributions after WW2. Data processing (i.e., 
computing) only takes place in the processor. Despite the computation and efficiency gains 
brought about by ever-faster memory (both DDR and HBM), processors nowadays can thus 
waste up to 60% of their capacity simply waiting for data from storage or memory, and 
substantial energy on moving the data between storage/memory and processor (Mutlu 2023). 
This performance and energy bottleneck is sometimes referred to as “von Neumann bottleneck” 
(Wolters et al. 2024).  

In-memory computing (IMC), also referred to as “compute-in-memory”, “memory-centric 
computing”, or “in-memory processing”, is a potentially promising solution to this problem. In 
this paradigm, data storage is removed altogether, all data being stored in memory. It is then 
either processed using logic attached to the memory arrays (“Processing-near-Memory”, PnM), 
or even without any logical processing unit (“Processing-using-Memory, PuM), which exploits 
the inherent analogue properties of memory for computation (Mutlu et al. 2024).  

IMC optimizes communication times no longer in the microsecond range, but in the range of 
nanoseconds. By shortening communication distances even more or eliminating them 
altogether, it also has the potential to be more energy efficient. It is particularly well-suited for AI 
inference (Wolters et al. 2024). While numerous prototypes exist, IMC is not yet deployed on a 
large scale due to challenges related to programming, system support, costs, and analogue 
computation challenges such as tolerating  circuit variation and noise specific to PuM (Mutlu 
2023). 

6.3 Shift in power conversion efficiencies 
The power supply unit (PSU) converts the input voltage (often 115 or 230 V AC) into DC voltage 
of, for example, 12V, 5V or 3.3 V to supply the various components on a server board. 

Since this conversion leads to thermal losses, which in the form of hot air also have to be 
transported out of the server and data center, there have been efforts to make PSUs energy-
efficient for a very long time. Back in the 80s and 90s, PSUs usually had poor efficiency at low 
loads, especially due to their static losses, which is why it has always been relevant not to 
massively oversize them. Servers often have a redundant power supply to meet the N+1 
redundancy criterion, which is on standby in case the regular power path fails. This reinforces 
the motivation to minimize static losses / improve efficiency at low utilization. Over the 2000s 
and 2010s, the 80plus standard evolved with it’s bronze, silver, gold, platinum and titanium 
labels for energy efficient power supplies (from bronze to titanium ascending efficiency) 
(Mpitziopoulos 2018). A titanium PSU guarantees a 90% power conversion efficiency even at 
10% load.  

In recent years, more and more chip designs for GPUs and now also for CPUs are designed to 
allow much more than 300 Watt; even into the range of 1 kW. Such power can simply not be 
transported with very low voltage; therefor already in 2016, the 48 V server mainboard design 
was introduced in the Open Compute Project (OCP). This concept is quite promising in 
computing environments with high power density and power-hungry chips. Especially in 
combination with highly efficient power conversion directly at the Point of Load (POL) with wide 
band-gap semiconductors like Gallium Nitride (GaN) as DC-DC power conversion module. 
Using these high efficient semiconductors, the power conversion towards the very low voltage 
power  for the chip usually does not happen laterally (besides the chip) anymore, but directly 
below or above it, by integrating the power conversion right below the chip, which is called 
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vertical power delivery (Krishnakumar and Partin-Vaisband 2023). Together with a more efficient 
AC-DC conversion (e.g. with SiC semiconductor-based converters), the total efficiency chain 
could be improved from 96% * 96% * 90% to 98% * 98% * 95%; reducing total losses to roughly 
half of previous power conversion architectures.  

6.4 Wider adoption of liquid cooling 
Section 5.6 discussed the rise of liquid cooling. So far, liquid cooling has been more of a niche 
technology, only marginally influencing overall server efficiency. With increasing power 
densities in both general purpose servers and – even more so – in AI-dedicated servers, 
however, liquid cooling becomes more and more of a necessity. As discussed in Section 5.6 
above, some GPU racks already require more than 100 kW of power. During our interviews, we 
found out that this trend is likely to continue, and some next-generation racks will be designed 
for up to 300 kW. 

While the expansion of liquid cooling seems unavoidable (as it has become a necessity), several 
types of liquid cooling exist, and it is hard to predict which will prevail or whether several will 
coexist. The basic design uses cold plates which circulate the coolant and are directly in 
contact with the heat-generating components, placed in contact with the cold plate. Cold 
plates evolved into direct-to-chip (D2C) cooling, where specially designed cold plates are 
placed directly onto the CPU or GPU die, the coolant thus being channeled through capillaries 
as close as possible to the heat-generating components. A quite different paradigm is called 
immersion cooling, where entire servers are submerged in a thermally conductive, dielectric 
fluid (Schneider Electric 2024).  

Finally, two-phase liquid cooling leverages the latent heat of vaporization for heat removal. In 
these systems, the coolant is designed to boil at a relatively low temperature when it absorbs 
heat from server components. As the liquid coolant vaporizes, it absorbs a significant amount of 
heat (much more than just raising its temperature in one-phase cooling) and carries it away as 
vapor. This vapor is then condensed back into a liquid, typically in a heat exchanger, releasing 
the heat to a secondary cooling loop or the ambient environment. Two-phase systems often 
employ specialized dielectric fluids with low boiling points. Two-phase liquid cooling can be 
combined with both D2C cooling (where boiling happens at processor level) and immersion 
cooling (where servers are submerged in a bath of two-phase coolant). The interviews revealed 
that two-phase systems are still few and far between, but that customer interest in them is 
steadily growing. 

As liquids are denser, have a higher specific heat capacity and a lower thermal resistance than 
air, heat can be removed with substantially less volumetric fluid flow as compared to air cooling 
(Lawrence 2024). And because the movement of fluid (whether gas or liquid) requires energy, 
liquid cooling thus has the potential to be more efficient than air cooling.  

These efficiency gains are hard to quantify, though, and not only because the exact type of liquid 
cooling that will prevail is hard to predict. It is also impossible to tell now to which extent liquid 
cooling will substitute air cooling: in our interviews, the experts agreed that hybrid cooling is the 
likely future of data centers, in which the share of liquid cooling could be anywhere between 30-
80%. Furthermore, it is also difficult to say how fast this substitution will happen: Retrofitting 
current DCs for liquid cooling is more challenging and costlier than foreseeing hybrid cooling 
from the outset for newly built data centers; how fast new DCs will be built depends however on 
various socio-economic and technological factors.  
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Finally, the energy savings induced by liquid cooling will occur both in the data center 
infrastructure (CRAC units etc.) and in servers themselves. In servers, they occur for two 
reasons: due to the diminished (or often entirely disappearing) server fans, but also because of 
less electric leakage at lower temperatures in the chip, for which up to 15% was recorded in 
some measurements (Thomas 2024). For the purpose of this study (i.e., the energy efficiency of 
servers), the infrastructure efficiency gains lie outside the boundaries and the server gains 
within, making an allocation of the efficiency gains necessary (if these were reasonably 
predictable). 

As with the trend towards 3D packaging and 3D monolithic chips, the distance that heat needs 
to travel through the semiconductor is rising, as even liquid cooling usually happens on the 
surface. Even though there are some approaches to better conduct the heat to the surface (e.g. 
Deng et al. 2024), chip manufacturers are discussing for some years if there should be an intra-
chip / or microfluid cooling be implemented directly into the chip (Judge 2024; Tyson 2021; Ao 
and Ramiere 2024). 

6.5 Future hardware refreshment cycles  
Section 5.7 discussed the lately longer hardware refreshment cycles of general-purpose 
servers, which is supported by both an economic and an environmental argument in the context 
of diminishing efficiency gains per generation and decarbonization of electricity. As energy grids 
worldwide transition toward lower-carbon power, the embodied carbon of new hardware – 
which is harder to decarbonize than operational electricity – becomes more relevant. From an 
environmental sustainability perspective, longer refresh cycles also align with circular economy 
principles, minimizing resource extraction, e-waste, and emissions from manufacturing.  

However, this approach must be balanced against potential performance needs and the 
cumulative energy savings that could arise from strategic upgrades. This is also not to argue that 
operational electricity (and thus energy efficiency) would not remain crucial. Not only for 
computing, but also environmentally: the smaller the global overall electricity consumption, the 
easier it is to decarbonize.  

But as the embodied carbon gains importance, organizations are increasingly adopting lifecycle 
assessments when planning refresh cycles, weighing the embodied carbon and resource costs 
of new equipment against the marginal efficiency gains of newer chips. Optimal refreshment 
strategies in this context aim not only to reduce operational costs but to balance environmental 
impacts across the hardware lifecycle, supporting both economic and environmental 
sustainability goals. 
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7 Conclusions 

7.1 Summary of key conclusions 
The analysis of energy efficiency across servers, GPUs, and ASICs in this study revealed 
substantial variation in measured data points, reflecting the inherent challenges in deriving 
clear indicators for technology trends. Across all categories, however, it can be relatively clearly 
deduced that the hardware is becoming much more performant (rather exponentially), the 
power consumption per device is increasing (rather linearly, but also strongly), and thus the 
efficiency in terms of computations per watt is improving significantly. Specialized hardware 
(GPUs, TPUs and ASICs) has established itself in the application areas of extremely high 
workloads and complex calculations such as crypto mining and machine learning, where it 
creates massive performance and efficiency leaps that cannot be achieved with general 
purpose CPUs. Currently it can be assumed, that the servers with two CPU sockets have still the 
biggest impact in the overall market, but the market for GPU based servers is currently growing 
much faster and could be more important within the next years (Shehabi et al. 2024).  

7.1.1 Continuing efficiency gains, but at differing paces 
With the results of this study, it can be quantitatively shown that general purpose servers as well 
as graphics cards, special AI chips such as TPUs and ASICS are still developing very dynamically 
in terms of their performance per energy input. For general purpose servers, this development is 
not quite as fast as in earlier times of Moore's Law. GPUs, TPUs and ASICs, on the other hand, 
have shown efficiency gains compatible with (or even higher than) Moore’s law over the last 
years. As they are younger technologies, it is perhaps not surprising that there was (and most 
likely still is) more untapped potential to exploit.  

Figure 23: Workload specific chips vs. general purpose CPUs qualitative illustration, derived from (Naffziger 2023) 

A significant challenge in assessing the energy efficiency of different hardware types lies in their 
diverse architectures and workload specializations. ASICs, for example, are designed for peak 
efficiency in single-purpose tasks, unlike general-purpose servers and GPUs, which are 
adaptable to a range of operations but often at a higher energy cost per task (see Figure 23). This 
specialization is a critical factor to consider when interpreting energy metrics, as ASICs will 
consistently outperform general-purpose hardware in narrowly defined tasks but cannot 
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compete on flexibility. In contrast, GPUs, while adaptable to multiple tasks, require parallel 
workloads to achieve energy efficiency, meaning that specific workload matching is crucial for 
accurate energy assessments. This is why very different metrics like SSJ-OP/s, Teraflop/s and 
Terahashes/s had to be considered when discussing the performance – and thus the energy 
efficiency – of compute chips and servers. It becomes most difficult within the general-purpose 
server segment, as their circuits might be optimized for different workloads, which is probably 
also a reason for the very widely varying results shown by the benchmarks, especially for very 
recent models.  

7.1.2 Main drivers for efficiency and possible developments 
For general purpose servers, efficiency improvements stem from various factors such as faster 
CPUs with more cores and larger caches coupled with faster memory technologies, advances in 
multi-threading and virtualization which enable more efficient resource utilization, faster 
interconnects, but also faster networks and storage and optimized server-side software. Chiplet 
designs and hybrid CPUs enable greater scalability and resource sharing. Improved idle power 
management also contributed to overall general purpose server efficiency. 

For GPUs, the most important driver was arguably the trend towards the inclusion of tensor 
cores, which are specialized processing units within GPUs that accelerate the matrix 
multiplications crucial to deep learning. The emergence of tensor cores accelerated the 
technological convergence of GPUs towards TPUs, which are ASICs designed specifically for 
this task of matrix operations. Despite their name, DC-grade GPUs thus become less and less 
suited for graphics, and increasingly fit for their main usage nowadays, ML training and 
inference.  

Faster memory also played a crucial role for both CPUs and GPUs. Not only faster, in fact, but 
also memory that is better suited for its task. CPUs saw DDR4 and DDR5 memory emerge, while 
for GPUs, GDDR memory has been increasingly replaced by HBM. Its multi-layer stack of RAM 
enables high bandwidth, low-latency communication to the processor, which for the large 
volumes of matrices involved in ML is of crucial importance. To further increase memory 
bandwidth and decrease the communication distance between processing place and data, in-
memory computing might grow in importance in future.  

The greatest increases in performance and efficiency continued to be achieved through the 
miniaturization of circuits in chips, and similar increases are expected to continue. At the same 
time, however, for both CPUs and GPUs, the performance gains have partly been achieved 
through increased per-chip or per-server power consumption. Over the last decade, the mean 
TDP of data center general purpose servers increased by a factor of 2-3, while for data center 
GPUs, it increased by a factor of 3-4. These trends show that performance gains were not only 
achieved by miniaturization but also by increasing the size (more parallel transistors of the 
same node size) – and, correspondingly, increased power consumption. As efficiency is 
performance divided by power, the efficiency gains are naturally reduced by these factors as 
compared to the performance gains. This tendency towards more power density also has 
implications for server cooling, as well be addressed below. 

Traditional air-cooling methods are reaching their limits in removing heat from increasingly 
powerful and dense servers, requiring alternative solutions such as liquid cooling. With historic 
roots dating back to the 1960s, liquid cooling remained a niche technology so far due to the 
effectiveness, reliability, and scalability of air cooling.  However, air cooling reaches its limit at 
around 40-50 kW per cabinet, a limit now surpassed by high-performance computing 
components such as GPU racks, which can exceed 100 kW and are projected to further 
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increase their power density. The share of liquid cooling of servers is thus bound to grow, most 
likely leading to more frequent hybrid cooling of data centers. This will also increase server 
efficiency as it reduces or eliminates the need for fans. 

Efficiency in the area of voltage conversion within the server is already very advanced and only 
losses in the single-digit percentage range remain. Nevertheless, optimization is still relevant, 
especially with regard to the distance from voltage conversion to consumption, as the power 
consumption per chip continues to increase and the very high-power consumption of modern 
CPUs and GPUs at extremely low voltage (<1.5V) leads to very high currents and thus losses. 
With the new paradigm of vertical voltage conversion, it is expected that losses can be 
significantly reduced once again compared to conventional conversion. 

As the old adage goes, “predictions are difficult, particularly about the future”. Quantifying the 
future development of server energy efficiency is not only subject to many drivers (only some of 
which are technological, others being socio-economic), but also to various ontological 
uncertainties.  

This study therefore focused on identifying the most influential technological drivers of server 
efficiency. It now wraps up by assessing for each of these drivers their potential for i) inducing 
efficiency gains, and ii) the expected adoption by 2030. Given the high uncertainties, both 
attributes are presented on an ordinal scale, as presented in Table 3. They reflect the subjective 
assessment of the authors based on the analysis throughout this study, which is itself rooted in 
the literature review and interviews performed for this study.  

While this approach cannot be directly deployed in e.g. future server energy modeling,  it can 
inform such assessments and models on the developments that are likely to be more important 
(and thus deserve more focus, careful methods, or uncertainty analyses). It can further serve to 
validate already existing models. 

Table 3 Drivers for energy efficiency in servers, together with the author’s assessment of their potential for energy 
gains and likely adoption by 2030, both on an ordinal scale reaching from 1 to 5. 

Efficiency  
driver 

Potential efficiency  
gains (1 – 5) 

Expected adoption  
by 2030 (1 – 5) 

Brief explanation 

Further miniaturization 4 3 – 4 Technology mature to continue 
at 26% / year; immediate large-
scale adoption guaranteed. 

Memory improvements & 
in-memory computing 

3 2 In-memory computing has solid 
potential but confronts adoption 
challenges and is not universally 
deployable. 

Power management 1 4 Further efficiency improvements 
are almost certain, but from a 
high level; remaining potential 
about 20% overall. 

Liquid cooling 1 2 – 3 Liquid cooling an increasing 
necessity, but with slow 
progress and limited efficiency 
implications. 

HW refreshment cycles -1 3 Slower refreshment cycles slow 
down efficiency gains; adoption 
high for general-purpose servers 
due to diminishing returns. 

 

As shown in Table 3, it is expected that in the near future, the main efficiency gains will continue 
to be delivered by the miniaturization of circuits in chips. These come with both strong efficiency 
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gains, and also with a fairly rapid diffusion rate. Further memory improvements, including mew 
paradigms, such as in-memory computing, are also expected to continue and will have an 
important influence; their adoption, however, is likely to proceed at a more moderate pace. By 
contrast, improved power management and liquid cooling can only bring modest efficiency 
gains, and adoption rate of the latter is also expected to be slow. Finally, the length of hardware 
refreshment cycles is inversely correlated with efficiency gains; however, after it has grown 
substantially over the past years, changes from now on are likely to be only incremental; hence, 
the overall effect is rather small as well. 

Overall, given that the important trends are expected to continue for some time and no obvious 
efficiency revolution is on the radar, the best guess for the near future is that hardware 
efficiency gains31 will continue along similar rates. Assuming thus that the improvements in 
efficiency will proceed with the same average growth rate (26% p.a. in SERT 2 over all systems), 
the SERT 2 efficiency would reach values above 250 in 2030 (see Figure 24). Tweaking the values 
from Table 3 due to different expectations towards individual efficiency gains or adoption rates, 
would correspondingly shift the curve from Figure 24 up- or downwards. 

Assuming the improvements in efficiency will proceed with the same average growth rate (26% 
p.a. in SERT 2 over all systems), the SERT 2 efficiency would reach 200 in 2030 (see Figure 24). 

7.2 Recommendations  

7.2.1 Miniaturization and energy efficient chip design is the key factor for energy efficiency  
Modern processors with a mix of high-performance (P-cores) and energy-efficient cores (E-
cores) allow servers to dynamically allocate workloads based on task requirements. Efficient 
processors also benefit from advanced manufacturing nodes (e.g., 7nm or below), which 
reduce power consumption by decreasing the energy needed per operation. Additionally, 
features like Dynamic Voltage and Frequency Scaling (DVFS) allow the processor to adapt its 

 
31 Next to hardware efficiency gains, the efficiency of computing is also subject to algorithmic efficiency 
gains. These are particularly relevant for AI, with an estimated doubling time of just 8.4 months on average  
(Ho 2024), but they lie outside the scope of this study. 

Figure 24: Extrapolation of the average efficiency improvements to 2030 
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power use in real time, based on workload demands, saving energy when full performance isn’t 
needed. 

7.2.2 Automatic hardware allocation based on more detailed performance indicators 
The diversification of CPU architectures - with E-cores (Efficient Cores), P-cores (Performance 
Cores) and additional chiplets - reflects a shift towards hardware tailored for heterogeneous 
workloads. These innovations allow CPUs to balance energy efficiency and performance by 
matching core types to task requirements. However, this adds complexity to hardware selection 
in multi-tenant, virtualized environments such as cloud Infrastructure-as-a-Service (IaaS), 
where a wide range of workloads such as machine learning, database management and 
microservices coexist. Static hardware allocation can result in underutilized resources or 
inefficient power consumption. A dynamic allocation system that matches VMs to optimal 
hardware configurations would achieve better efficiency by using hardware tailored to specific 
tasks. 

In this adaptive approach, each hardware configuration would undergo standardized 
benchmarking to generate 'capability profiles' that reflect performance in relevant areas (e.g. 
matrix operations, I/O throughput). At the same time, each VM request would be assigned a 
'task demand profile' based on expected requirements (e.g. floating-point computation for ML 
or low-latency memory access for web hosting). A resource orchestration system would then 
match these profiles and dynamically allocate VMs to the most appropriate hardware. 

To continuously improve this process, a feedback loop would monitor performance and refine 
both task and hardware profiles over time using machine learning. This automated, adaptive 
allocation could optimize energy efficiency and performance by ensuring workloads receive the 
most appropriate hardware, reducing over-provisioning and maximizing performance per watt, 
contributing to more sustainable cloud operations. 

7.2.3 Server virtualization and utilization  
In the study analysis it was found that servers aren’t perfectly energy proportional. Especially 
the fact that in low utilization levels, the efficiency in terms of Performance/Watt is very bad, 
this is a relevant recommendation towards those who operate servers (even if data centers itself 
are not in the scope of the study). High server utilization through consolidation is therefore 
critical for overall energy efficiency in a system of servers like a compute cluster or a data 
center. Low utilization leads to "stranded" energy, where servers draw power without 
contributing proportionately to computational tasks, effectively wasting energy, even if the idle 
consumption has been reduced as shown in section 4.1.2. Modern servers are often 
underutilized, with utilization rates in some data centers averaging only 10–30%, leaving 
substantial room for improvement through workload consolidation and virtualization. By 
increasing server utilization, data centers can reduce the number of active servers needed, 
cutting both energy consumption and cooling requirements, thus improving operational 
efficiency and sustainability. A next step would be to switch at least some of the servers that are 
currently not in use (e.g. during the night) to an active standby mode (<5 watts), from which they 
can be reactivated via the network within milliseconds when needed, just like a modern 
smartphone.   

7.2.4 Energy efficient power-supply-units in servers 
Energy-efficient power supply units (PSUs) are crucial for overall energy efficiency in data 
centers because they minimize energy loss during power conversion, reducing the amount of 
electricity drawn from the grid. By decreasing wasted energy, efficient PSUs lower the heat 
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output of servers, which in turn reduces the cooling demand and saves on additional power 
consumption. Standard PSUs in modern data centers already achieve efficiencies around 90–
94% under typical load conditions (Van Geet and Sickinger 2024), but further gains—especially 
approaching 96% or higher—are still possible with optimized designs and advanced power 
conversion technologies like 48V at rack level. These incremental improvements could still 
reduce both operational costs and the environmental footprint of large-scale server facilities. 

7.2.5 Energy efficient cooling methods 
The cooling of the data center and the server have a significant impact on the energy efficiency 
of the overall system. While the power usage effectiveness (PUE) is an effective measure of the 
data center’s infrastructure losses (cooling, UPS, lighting, etc.), the cooler in the server can also 
result in a notable increase in energy consumption. In specific instances, this can result in an 
increase of over 20% in the power consumption of the server. Experimental evidence indicates 
that environmental conditions, including the supply and exhaust air temperature and airflow of 
a server, must be carefully calibrated to achieve optimal energy efficiency (Sarkinen et al. 2020). 
Insufficient attention to these factors can result in significantly higher total power consumption 
than necessary, even when PUE values are excellent.  

For certain contemporary high-performance chips (CPUs, GPUs and TPUs), manufacturers have 
already advised lowering the supply air temperatures below the ranges recommended by 
ASHRAE. This results in elevated energy requirements for cooling. In such instances, it would be 
prudent to consider the use of increasingly liquid-cooled systems (immersion and on-chip), as 
higher power densities are not an issue here due to enhanced heat capacity and transfer. Server 
manufacturers are also offering heat sinks for liquid cooling as standard for an ever-increasing 
range of products, and there is no risk of losing the warranty or incurring significant costs for the 
cooling system. 

7.2.6 Regulation and standardized metrics 
It is very important that regulators from different economic areas, such as the EU, US and 
China, harmonize which parameters they regulate as efficiency criteria and how these are 
defined. Good coordination with industry (e.g. ITI The Green Grid, ITU) and science and research 
is essential. Ongoing monitoring and adaptation of regulations is particularly necessary in the 
area of new capacities being built for AI. Here, policymakers need to be very careful to walk the 
fine line between efficiency targets and openness to innovation, in order to avoid being left 
behind technologically or, at the other extreme, operating very inefficient hardware.  
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