
 
 

 

 

Data Centre Energy Use: 
Critical Review of Models 
and Results 

M A R C H  2 0 2 5  

 



 

 
The Technology Collaboration Programme on Energy Efficient End-Use Equipment (4E TCP), has 
been supporting governments to co-ordinate effective energy efficiency policies since 2008. 

Fourteen countries and one region have joined together under the 4E TCP platform to exchange 
technical and policy information focused on increasing the production and trade in efficient end-use 
equipment. However, the 4E TCP is more than a forum for sharing information: it pools resources 
and expertise on a wide a range of projects designed to meet the policy needs of participating 
governments. Members of 4E find this an efficient use of scarce funds, which results in outcomes 
that are far more comprehensive and authoritative than can be achieved by individual jurisdictions. 

The 4E TCP is established under the auspices of the International Energy Agency (IEA) as a 
functionally and legally autonomous body. 

Current members of 4E TCP are: Australia, Austria, Canada, China, Denmark, the European 
Commission, France, Japan, Korea, Netherlands, New Zealand, Switzerland, Sweden, UK and USA. 

Further information on the 4E TCP is available from: www.iea-4e.org  

 

 

 

 
The Efficient, Demand Flexible Networked Appliances Platform of 4E (EDNA) provides analysis and 
policy guidance to members and other governments aimed at improving the energy efficiency and 
demand flexibility of connected devices and networks. 

Further information on EDNA is available from: www.iea-4e.org/edna  

 

 

 

This report was commissioned by the EDNA Platform of the 4E TCP and authored by Kamiya, G. & 
Coroamă, V.C..  The views, conclusions and recommendations are solely those of the authors and do 
not state or reflect those of EDNA, the 4E TCP or its member countries. 

Views, findings and publications of EDNA and the 4E TCP do not necessarily represent the views or 
policies of the IEA Secretariat or its individual member countries. 

 



 i 

 
 
 
 
 
 
Data Centre Energy Use: Critical Review of 
Models and Results 
 

March 2025 

 
George Kamiya *1 

Vlad C. Coroamă *2 
1 Independent Expert, United Kingdom. gkamiya@gmail.com   
2 Roegen Centre for Sustainability, Switzerland. vlad@roegen.ch 
 

* Both authors contributed equally to this research.  

 

 

Prepared for: 

EDNA (Efficient, Demand Flexible Networked Appliances) 

IEA 4E TCP (Technology Collaboration Programme on Energy Efficient End-Use Equipment) 

 
 

Suggested citation: Kamiya, G. & Coroamă, V.C. (2025). Data Centre Energy Use: Critical 
Review of Models and Results. EDNA – IEA 4E TCP.  

mailto:gkamiya@gmail.com
mailto:vlad@roegen.ch


 ii 

Table of Contents 
 
 

Executive Summary .......................................................................................... iv 

1. Introduction ................................................................................................. 1 
1.1 Background .............................................................................................................. 1 
1.2 Scope of the study ..................................................................................................... 1 
1.3 Objectives and approach ........................................................................................... 2 

2. Methodology ................................................................................................. 4 
2.1 Summary of overall approach .................................................................................... 4 
2.2 Choice of literature ................................................................................................... 4 
2.3 Literature classification criteria ................................................................................. 6 

2.3.1 Modelling approaches – state-of-the-art and own taxonomy ........................................ 6 
2.3.2 Modelling approaches – advantages and drawbacks ................................................... 9 

2.4 Extracting numerical results ..................................................................................... 10 
2.5 Quality assessment ................................................................................................. 10 
2.6 Deriving global estimates ......................................................................................... 11 

3. Critical review ............................................................................................ 12 
3.1 Global estimates ...................................................................................................... 12 
3.2 Regional and country-level estimates ....................................................................... 19 

3.2.1 United States .......................................................................................................... 20 
3.2.2 Europe .................................................................................................................... 24 
3.2.3 China ...................................................................................................................... 27 
3.2.4 Other countries and regions ..................................................................................... 28 

3.3 Artificial intelligence ................................................................................................ 29 
3.3.1 AI energy use ........................................................................................................... 29 
3.3.2 AI energy use in data centres .................................................................................... 30 
3.3.3 AI projections to 2030 .............................................................................................. 32 

4. Estimating the energy use of data centres .................................................... 34 
4.1 Modelling methodology ............................................................................................ 34 
4.2 Global estimates ...................................................................................................... 34 
4.3 Regional and country-level estimates ....................................................................... 35 
4.4 Aggregated company-level data ................................................................................ 36 



 iii 

5. Discussion ................................................................................................. 38 
5.1 Summary of results .................................................................................................. 38 
5.2 Key parameters influencing results ........................................................................... 39 

5.2.1 Modelling approach ................................................................................................. 39 
5.2.2 Author affiliation ...................................................................................................... 39 
5.2.3 Other parameters .................................................................................................... 40 

5.3 The limits and necessity of projections: Learning from the past .................................. 40 
5.3.1 Late 1990s to early 2000s: “Dig more coal, PCs are coming” ..................................... 40 
5.3.2 Late 2010s: “Tsunami of data could consume one fifth of global electricity by 2025” .. 41 
5.3.3 Current AI-driven energy surge: Déjà vu or is it for real? ............................................. 42 

6. Conclusions and recommendations ............................................................ 44 
6.1 Summary of key conclusions .................................................................................... 44 
6.2 Recommendations ................................................................................................... 45 

6.2.1 Improving models and estimates .............................................................................. 45 
6.2.2 Guidelines for interpreting and critically assessing studies ........................................ 46 
6.2.3 Summary of recommendations ................................................................................ 46 

References ...................................................................................................... 48 

 

  



 iv 

Executive Summary 
There are wide-ranging estimates of data centre energy use in the literature, 
causing confusion for policymakers and decision-makers. Estimates and 
projections for 2020 range from less than 200 TWh to 1 200 TWh, while projections for 
2030 range from just over 200 TWh to nearly 8 000 TWh – a factor of almost 40.  

The objective of this study is to conduct a comprehensive and critical review of 
existing models and assessments of the energy use of data centres. Based on this 
analysis, it aims to answer the following research questions:  

• How have previous studies estimated data centre energy use, and what factors 
have contributed to wide-ranging estimates? 

• What is the most plausible range for data centre energy use today? 

• What best practices should be followed when conducting assessments, and 
which pitfalls should be avoided? 

This study identified and reviewed over 100 articles, reports, and statistics 
published since 2014, covering thousands of energy estimates and projections from 
2010 to 2040 across over 200 scenarios and cases. Nearly half of these publications 
had been published since January 2024, indicating the recent and rapid growth in 
interest. The studies cover global, regional, and country-level estimates from 
academia, industry, governments, and intergovernmental agencies. We also collated 
published energy data from 60 of the largest data centre operators since 2018. Finally, 
we reviewed emerging literature on AI energy use in data centres. This is the most 
comprehensive published review of data centre energy estimates to date. 

The publications were reviewed and catalogued on several key attributes, 
including affiliation, publication type, geographic scope, time horizon, and 
methodological and modelling approach. 

We propose a classification of five different modelling approaches: bottom-up, 
aggregated totals, temporal proxy extrapolation, hybrid, and other. Aggregated 
totals are often referred to as “top-down” in the literature and rely on aggregated 
national or organisational energy consumption data. To distinguish them from true top-
down methods such as quantitative systems dynamics or input-output analysis, we 
prefer “aggregated totals”. Temporal proxy extrapolation uses proxies such as IP traffic 
and efficiency improvement scenarios to extrapolate projections. Usually referred to 
simply as “extrapolation”, we suggest the new name to distinguish it from scope or 
geographic extrapolation. 

Each publication’s methods and data sources were evaluated and assessed on a 
six-point scale of quality: low, low-medium, medium, medium-high, high, and very 
high. Publications that did not provide sufficient detail regarding their methodologies 
were categorised as ‘not assessed’. 

Studies assessed as ‘low’ – all using temporal extrapolation approaches – had the 
widest range of estimates and projections for the year 2023, ranging from 480 TWh 
to 2 000 TWh across 17 scenarios and cases. Studies of higher assessed quality (low-
medium and higher, 22 publications) had a much lower and narrower range of 
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estimates (190–560 TWh) across 42 scenarios and cases. The modelling approach is a 
good predictor for assessment quality, while main author affiliation – perhaps 
surprisingly – is not. 

Global studies assessed as ‘high’ quality had a range of 210–440 TWh in 2023, with 
an average base case estimate of 335 TWh. Two further assessment methods helped 
to corroborate the global review: the review and aggregation of over 80 regional and 
country-level studies and the aggregation of company-level data from 60 of the largest 
data centre operators globally. 

Figure ES.1 Estimates of global data centre energy use in 2023, by assessed quality 

 

Notes: Range of estimates include all scenarios, while average values are for base cases only. Numbers in parentheses indicate the number 
of studies (s) and estimates (e). “Not assessed” are studies that did not share sufficient methodological detail to assess their quality.  
 

The regional aggregation approach yielded a global estimate of 290–470 TWh in 
2023, with a central (best guess) estimate of 360 TWh. At the regional level, we 
estimate data centres consumed 125–200 TWh in North America (including 120–195 
TWh in US), 105–180 TWh in Asia Pacific (including 70–130 TWh in China), 55–80 TWh in 
Europe, and 5–10 TWh in other regions. 

Based on in-depth analysis of company-level data, we estimate data centres used 
300–380 TWh in 2023. This is based on analysis of 60 of the largest data centre 
operators globally, which we estimate to account for at least three-quarters of the 
global cloud, colocation, and hyperscale market. We estimate that company-wide 
electricity use of the four largest data centre operators more than tripled between 2018 
and 2023 from around 35 TWh to over 110 TWh, with data centres likely accounting for 
around 80% of it, or around 90 TWh. 

We therefore estimate that data centres globally consumed 300–380 TWh in 2023 
(excluding crypto) based on analysis of over 100 studies published since 2014 and data 
from over 60 of the largest data centre operators.  
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Figure ES.2 Results of three complementary approaches to estimate global data centre energy 
use, 2023 

 

Notes: Global review includes studies that were assessed to be ‘6 - High’. Central estimate indicates authors’ best estimate. 
 

Artificial intelligence – particularly generative AI – is widely expected to be a key 
driver of near-term growth in data centre energy use. Several studies have 
estimated the current and future energy use of AI in data centres, focusing on the 
energy use of AI accelerators such as GPU. These studies estimate current AI-related 
energy use to be relatively low at 10–50 TWh (5–15% of global data centre energy use in 
2023), but project this to increase rapidly to 200–900 TWh by 2030. We estimate a 
plausible range of AI data centre consumption of 200-400 TWh in 2030 (35-50% of 
overall data centre energy use projected in 2030). 

Journalists, policymakers, and other non-experts are encouraged to critically 
assess the quality of data centre energy estimates. They can ask questions related 
to data quality and methodologies, analytical scope, and the domain expertise of the 
authors to assess the quality of publications to avoid amplifying poor quality analysis. 
Journalists in particular are advised to avoid cherry-picking the most extreme scenario 
results that exaggerate or downplay the energy and environmental impact of data 
centres. 

In this complex and dynamic field, companies, governments, researchers, and 
other stakeholders are called upon to contribute to more rigorous estimates. 
Companies and governments should improve data accessibility and transparency 
through systematically collecting and publicly reporting timely, high-quality data. 
Energy modellers should clearly define system boundaries and collect data instead of 
making assumptions whenever possible. They should also avoid projections reaching 
more than five years into the future. 
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1. Introduction 
The digital infrastructure, devices, and technologies that underpin the digital 
transformation have a range of energy, climate, and other environmental impacts. 

Given the urgency of the climate crisis, rapid developments in technology and 
behaviour, and important but uncertain impacts of digitalisation, there is a critical 
need to better understand the current and near-term energy and climate impacts of 
digitalisation to inform sound policymaking. 

1.1 Background 
Published estimates of the energy use of the global information and communication 
technology (ICT) sector, including data centres, differ substantially. For example, data 
centre energy use estimates and projections for 2020 diverge by a factor of six from 
around 200 TWh (Malmodin et al., 2024; Masanet et al., 2020) to 1 200 TWh (Andrae & 
Edler, 2015). Projections and scenarios for 2030 diverge by nearly 40-times. 

These wide-ranging and inconsistent estimates frustrate public understanding and 
pose challenges for thoughtful policymaking. The lack of statistical data from 
governments as well as standardised methodologies and assumptions in the field 
contribute to perpetuating these challenges (Bremer et al., 2023). At the same time, 
the topic is gaining greater importance and attention due to the rise of artificial 
intelligence (AI) and the associated concerns about its rapid growth in energy 
consumption (de Vries, 2023; IEA, 2024a). 

1.2 Scope of the study 
This study sets out to critically review existing models and assessments of the energy 
use of data centres (DCs), together with their deployed assessment methods. It 
provides a critical and objective analysis of the existing literature to provide clear and 
actionable insights to conduct robust assessments on the energy use of DCs to inform 
policy and technology choices to mitigate their impacts. 

The scope of the study includes: 

• Metric and functional unit: the annual energy consumption (expressed in 
terawatt-hours per year [TWh/year]) of data centres. Where possible, we 
extract energy data from studies using other metrics (e.g., greenhouse gas 
(GHG) emissions that we back-calculate to electricity use). 

• Types of data centres: all categories of data centres are covered, notably the 
three categories often distinguished in the literature: hyperscale, colocation, 
and enterprise DCs. Due to its growing importance, the artificial intelligence 
(AI) server capacity is – to the extent possible – singled out within the sum of all 
DCs. Cryptocurrency mining is excluded from the analysis. 

• Lifecycle phases: as the operational (use phase) energy dominates the 
lifecycle of data centres (Masanet et al., 2013) and most of the available 
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literature focuses on this phase, we focus on operational energy and exclude 
production and end-of-life energy from the scope of analysis. 

• Devices and equipment within data centres: complete scope of DCs, 
comprising servers, storage, networking, and infrastructure (e.g. cooling, 
lighting). 

• Geography: worldwide, as well as country, regional, and company-level data to 
devise their share towards the total. 

• Time horizon: both historical analyses (2010 onwards) and projections (up to 
2030). 

• Publication date: since 2014. 

Hence, the analysis does not include other types of environmental impacts (e.g., 
GHGs, water or resource consumption), further ICT subsectors beyond DCs (such as 
telecommunication networks or end-user devices), hardware dedicated to crypto 
mining, other life cycle phases (i.e., production or end-of-life), and older studies (i.e., 
publications prior to 2014 or values older than 2010). 

1.3 Objectives and approach 
The main objective of this study is to conduct a comprehensive and critical review of 
published assessments of the energy use of data centres, including their deployed 
models and methods. 

Our approach aims to both cover more studies and provide critical assessments which 
are lacking in some previous reviews such as Freitag et al. (2020, 2021). Reviews that 
are not comprehensive (i.e., only covering a select few studies) or uncritical (i.e., 
showing results from studies as equally valid) risk being misinterpreted by readers. 

The study aims to answer the following research questions: 

1. How have previous studies estimated data centre energy use, and what factors 
have contributed to wide-ranging estimates? 

2. What is the most plausible range for data centre energy use today? 

3. What best practices should be followed when conducting assessments, and 
which pitfalls should be avoided? 

To address these questions, the remainder of the report is organised as follows.  

Chapter 2 provides an overview of the methodology employed by this study for all the 
three research questions above.  

Chapter 3 summarises the critical review of data centre energy estimates from a range 
of available sources, including government data and reports, peer-reviewed journal 
articles, industry data and reports, and other grey literature. It shows the range of 
estimates for DCs globally and for key countries and regions as well as the estimates 
for AI energy consumption in DCs. It also presents a short summary for each of the 
approaches, which determines the individual quality assessments. It also presents an 
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own 2023 assessment based on aggregating company-level energy data from large 
data centre operators. 

Building on these results, Chapter 4 summarises the approach used to estimate 
global data centre energy consumption in 2023. Chapter 5 summarises the results of 
the study and discusses key strengths and limitations of the analysis.  

Chapter 6 concludes the report with key recommendations for analysts conducting 
assessments of data centre energy use and guidelines for those interpreting these 
assessments. 
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2. Methodology 
As discussed in Section 3.2 and shown in Figure 3.1, there are wide-ranging estimates 
of data centre (DC) energy consumption, with some near-term projections diverging by 
more than an order of magnitude. 

These differences and inconsistencies stem from several key causes, including a lack 
of reliable data combined with differences in underlying assumptions, modelling 
approaches, and system boundaries. 

2.1 Summary of overall approach 
To address these inconsistencies and answer the three related research questions 
introduced in Section 1.3, we proceeded as follows: 

• Gathered relevant data centre energy estimates published since 2014, 
including academic publications, reports and statistics from governments and 
intergovernmental agencies, and industry reports. 

• Catalogued the publications and estimates according by key parameters such 
as modelling approach, system and geographic boundaries, time horizon, and 
publication type. 

• Extracted numerical values from the studies to compare estimates at different 
geographic and technological scopes (e.g. global, US, Europe, AI). 

• Conducted a critical assessment of the quality of each publication based on 
several criteria such as modelling approach or the robustness of underlying 
data and assumptions. 

• Presented a new, narrower range of data centre energy estimates based on the 
high-quality studies at the global, regional, and country levels and analysis of 
company-level data.  

• We conclude the study with a list of recommended best practices that should 
be followed when conducting such assessments. 

2.2 Choice of literature 
The study reviews recent literature on data centre (DC) energy demand at the global, 
regional, and national levels. Given the heterogeneity of publications, this work could 
not be performed merely as a traditional academic literature review. While some of the 
studies reviewed are indeed peer-reviewed journal papers, a number of other pivotal 
studies have been published at non-indexed venues and would not appear in a 
systematic database search of the scientific literature. 

These include contributions in conferences, such as the ICT4S (ICT for Sustainability) 
conference proceedings, as well as key studies published by reputable organisations 
such as the International Energy Agency (IEA, 2023b, 2024a), Efficient, Demand 
Flexible Networked Appliances (EDNA, 2019a, 2019b, 2021), and the European 
Commission (Kamiya & Bertoldi, 2024), which would also not show up in academic 
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database searches. Most of the existing assessments of AI energy consumption also 
come from the industry (EPRI, 2024; Schneider Electric, 2023) or consultancy 
companies, e.g. (Lee, 2023; Semianalysis, 2024). Finally, several of the most valuable 
primary data sources are studies stemming in the ICT industry itself, which is typically 
scattered across company sustainability reports, white papers, press releases, and 
websites. 

Overall, we identified and reviewed over 100 publications (excluding the duplicates 
which appear in several categories) as presented in Table 2.1. These publications 
include thousands of energy estimates and projections from 2010 to 2040 across over 
200 scenarios and cases. Nearly half of all studies reviewed had been published since 
January 2024, indicating the recent surge in interest in the topic. Almost all studies 
focused on the US have been published since 2024. 

Table 2.1 Overview of reviewed literature 

Scope Number of studies 
(scenarios / estimates) 

Studies 

Global 51 (75) Andrae, 2017, 2019a, 2019b, 2020; Andrae & Edler, 2015; BCG, 2025; Belkhir & Elmeligi, 2018; 
Bordage, 2019; Crenes & Criqui, 2018; Deloitte Global, 2024; EDNA, 2019b, 2021; Gas Exporting 
Countries Forum, 2024; GeSI, 2015; Goldman Sachs, 2024; Graham, 2024; Greenpeace, 2017; 
GSMA Intelligence, 2024; Hintemann & Hinterholzer, 2019a, 2020, 2022; IDC, 2024a, 2024c; 
IDTechEx, 2025; IEA, 2014, 2017, 2019, 2020, 2021, 2022b, 2023b, 2024a, 2024b; ITU, 2020; 
Jeffries, 2024; Koot & Wijnhoven, 2021; Liebreich, 2025; Liu et al., 2020; Malmodin et al., 2024; 
Malmodin & Lundén, 2018; Masanet et al., 2020; Schneider Electric, 2021, 2023; TD Securities, 
2024; The Shift Project, 2019, 2021b, 2021a, 2024; Thunder Said Energy, 2025; Van Heddeghem et 
al., 2014; World Bank & ITU, 2024 

United States 23 (35) BCG, 2023, 2024; EPRI, 2024; Goldman Sachs, 2024; Guidi et al., 2024; IDC, 2024a; IEA, 2024a; 
Jeffries, 2024; Lee, 2023, 2024; Liebreich, 2025; Masanet et al., 2020; McKinsey, 2023, 2024a; 
Rhodium Group, 2024; Rystad Energy, 2024; Semianalysis, 2024; Shehabi et al., 2016, 2018, 2024; 
S&P Global, 2024; S&P Global Commodity Insights, 2024; S&P Global Market Intelligence, 2024a, 
2024b; TD Securities, 2024; The Economist, 2024 

Europe 44 (60) Ademe & Arcep, 2022; Arcep, 2024; Avgerinou et al., 2017; Bashroush, 2018; Bertoldi et al., 2017; 
Beyond Fossil Fuels, 2025; Bio by Deloitte & Fraunhofer IZM, 2014; Bitkom & Hintemann, 2021; 
BloombergNEF et al., 2021; Bordage et al., 2021; Central Statistics Office, Ireland, 2021, 2022, 
2023; CITIZING, 2020; COWI, 2018, 2021; Danish Energy Agency, 2021, 2022, 2023; Dodd et al., 
2020; Hintemann et al., 2023; Hintemann & Hinterholzer, 2020, 2022; ICIS, 2024; Kamiya & 
Bertoldi, 2024; Lannelongue et al., 2024; McKinsey, 2024b; Montevecchi et al., 2020; National Grid 
ESO, 2022, 2024; Node Pole & CBRE, 2022; NVE, 2024; NVE (Norwegian Water Resources and 
Energy Directorate), 2023; Orkustofnun, 2024; Prakash et al., 2014; Radar, 2020; Statistics Finland, 
2022; Statistics Netherlands, 2021a, 2021b, 2022; Swedish Energy Agency, 2023; Traficom, 2023; 
VHK & Viegand Maagøe, 2020 

China 11 (11) China Academy of Information and Communications Technology, 2023; Chinese Electronics 
Standardization Institute, 2022; Development Research Center of the State Council, 2024; Fan, 
2021; Greenpeace East Asia, 2021; Greenpeace East Asia and North China Electric Power 
University, 2019; IEA, 2025; Jeffries, 2024; Li et al., 2024; Open Data Center Committee, 2022; Xie, 
Han and Tan, 2024 

Other countries 12 (12) Bain et al., 2021; CRIEPI, 2024; Deloitte Tohmatsu MIC Research Institute, 2022; Hannam, 2024; 
IEA, 2022a; Japan Atomic Industrial Forum, 2024; Kitchen, 2024; Singapore Energy Markets 
Authority, 2022, 2023, 2024; Singapore Ministry of Communications and Information, 2021; Vij, 
2024 

AI (global) 11 (20) de Vries, 2023; Deloitte Global, 2024; Gartner, 2024a, 2024b; Goldman Sachs, 2024; IDC, 2024c; 
IEA, 2024a; Morgan Stanley, 2024; RAND, 2025; Schneider Electric, 2023, 2024; Semianalysis, 
2024 
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2.3 Literature classification criteria 
Each of the publications and estimates were catalogued each of the publications on 
the following parameters: 

• Affiliation: academia, government, industry, non-governmental organisation, 
mixed 

• Publication type: peer-reviewed, preprint, report 

• Geographic scope: global, multi-country, country 

• Time horizon: historical, projection 

• Methodological and modelling approach: bottom-up, aggregated totals, 
temporal proxy extrapolation, hybrid, other (addressed in Section 2.3.1 below). 

• Analytical scope: data centre types (e.g. enterprise, cloud, hyperscale), 
specific technologies or topics (AI). 

Table 2.2 describes the significance of each of these parameters and lists and briefly 
describes their possible values. 

2.3.1 Modelling approaches – state-of-the-art and own taxonomy 
The literature identifies three main approaches for the assessment of data centre 
energy consumption: “bottom-up”, “top-down”, and “extrapolation” (Kamiya & 
Bertoldi, 2024; Mytton & Ashtine, 2022; UNCTAD, 2024). They can be shortly described 
as follows: 

• Bottom-up studies combine detailed technology data such as equipment 
specifications (e.g. server power draw) with estimates of the installed 
equipment base, to arrive at estimates of overall DC energy consumption.  

• Top-down studies rely on energy consumption data from governments and 
companies, making them accurate and easy to update. However, due to 
limited data availability, they often require complementary methods (such as 
geographic extrapolation) for full coverage. 

• Extrapolation approaches project energy consumption into the future based 
on high-level indicators and proxies such as Internet traffic. They are 
transparent and easy to update but lack explanatory depth and carry the risk of 
overestimation in long-term projections.  

We largely agree with this taxonomy, but consider two of these three terms imprecise 
and potentially misinterpreted, and thus propose a new terminology. “Extrapolation” is 
generally used for temporal extrapolation based on compound annual growth rates or 
other proxy indicators. Scope extrapolation, however, is also often deployed to widen 
the scope of the analysis, such as from a few companies to the entire market or from 
one country to a continent or the world. We thus suggest a more explicit term 
“temporal proxy extrapolation” for what is often described in the literature as 
“extrapolation”. 
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Table 2.2 Literature review parameters 

Parameter Description and significance Types and examples 

Affiliation Organisation(s) that employ the authors of 
the published analysis or otherwise 
affiliated or associated with the researcher.  

Affiliation can provide useful context about 
the researcher's background, resources, 
and potential biases. 

• Academia: universities and research institutions. 

• Government: government agencies, government-affiliated 
laboratories or research institutions, intergovernmental 
organisations. 

• Industry: companies, including consultancies and investment banks. 

• Non-governmental organisation: advocacy, think tanks. 

• Mixed: more than one of the above types. 

Publication type The type of publication format. 

Publication type provides an indication of 
the level of scrutiny and validation the 
analysis has undergone. 

• Peer-reviewed: articles that have been reviewed by relevant experts 
who assess the research's methodology, results, and conclusions. 
The peer-review process can – but not always – increase the quality, 
accuracy, and validity of the research. 

• Preprint: research papers that have not yet undergone peer review 
that published publicly available before being submitted to a journal. 

• Report: other publications with wide-ranging quality and credibility. 
Some reports such as from intergovernmental organisations undergo 
extensive external review and can achieve levels of analytical quality 
equivalent to the highest quality peer-review publications. 

Geographic scope The geographic scope of analysis, e.g. 
global or country-level. 

Geographic scope is important to consider 
the relevance and generalisability of 
findings. 

• Global: studies with global estimates. Some studies may further 
provide regional or country-level breakdowns. 

• Multi-country: studies covering multiple countries, typically a region 
(e.g. European Union). 

• Country: studies covering a single country. 

Time horizon Indicates whether the study includes 
retrospective and/or prospective 
estimates. 

Time horizon provides important context of 
the analysis. For example, a projection for 
2020 published in 2015 should be 
interpreted differently than an estimate for 
2020 published in 2022. 

• Historical: putting forward historic or current values. 

• Projection: presenting future estimates. 

• Both: both historical and projections. 

Methodological and 
modelling approach  

The primary modelling approach employed 
by the analysis. 

Modelling approach provides an important 
indication of the overall analytical quality 
and how the results may be interpreted. For 
example, a global estimate extrapolated 
from assumptions from a single country 
may not necessarily be representative, as 
would a temporal extrapolation 20 years 
into the future. 

• Bottom-up: combining bottom-up data such as installed server base 
with per-server consumption. 

• Aggregated totals: aggregation of company or national 
measurements of DC energy consumption. 

• Temporal proxy extrapolation: extrapolation of proxy indicators to 
project future DC consumption. 

• Other: other approaches such as quantitative system dynamics. 

• Hybrid: combines multiple approaches. 

Analytical scope The inclusion (or exclusion) of specific data 
centre types and/or specific digital 
technologies. 

Analytical scope is important to consider 
completeness of the analysis and to ensure 
comparability between studies. 

• Data centre types (e.g. enterprise, cloud, hyperscale) 

• Coverage of emerging technologies (AI) 
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Additionally, we propose the term “aggregated totals” instead of “top-down” for three 
reasons. First, because “top-down” can be interpreted in different ways. Bottom-up 
assessments also deploy large statistics of national or global server sales, which might 
justify the term “top-down” as well. Explicitly showing that this method of aggregated 
totals, as opposed to aggregating equipment-level data in bottom-up assessments, 
eliminates this potential confusion.  

Additionally, what is typically described as “top-down” often implies several layers of 
aggregation: individual server rooms or buildings are aggregated into a total DC site 
consumption, all sites of an organisation or a country are aggregated to a company- or 
country-level number, and several companies (e.g., the “big five”, Amazon, Apple, 
Google, Meta, and Microsoft) or several countries can also be aggregated to larger 
entities – the name “aggregated totals” naturally reflects the possibility of several such 
layers of aggregation. 

Finally, what the ICT energy consumption literature refers to as “bottom-up”, largely 
coincides with what the energy systems modelling literature describes as “bottom-up” 
as well. In energy system modelling, however, “top-down” models often deploy 
macroeconomic proxies such as economic growth, employment levels, or 
competitiveness, from which projected energy consumption is then derived (Herbst et 
al., 2012). They are thus rather like the [temporal proxy] “extrapolation” models of the 
DC energy literature. Using the term “top-down” to describe something quite different 
might confuse the energy modelling community which is increasingly taking an interest 
in DC energy modelling. 

We classify studies into one of five approaches defined and explained below. As 
most studies rely on a combination of approaches, we classify them in the most 
appropriate category based on the predominant approach employed. 

1. Bottom-up: Based on estimates of the installed server and IT equipment base 
combined with equipment specifications (such as the average server power 
consumption), equipment lifespans, and other energy-influencing attributes (such 
as power-usage effectiveness [PUE])1. 

2. Aggregated totals: Often described in the literature as “top-down” (Kamiya & 
Bertoldi, 2024; Masanet et al., 2024; Mytton & Ashtine, 2022; UNCTAD, 2024), this 
approach relies on national, regional, or organisational energy consumption data, 
which have been directly measured or estimated at an aggregate level.  

3. Temporal proxy extrapolation: Starting from an initial base estimate obtained 
from either of the methods above, high-level proxies and indicators such as data 
traffic and energy intensity assumptions are combined to extrapolate projections 
of DC energy use under varying activity and efficiency improvement scenarios. 
Mytton and Ashtine (2022) refer to this method simply “extrapolation”; to 
distinguish it from scope and geographic extrapolation (discussed below), we refer 
to this as “temporal proxy extrapolation”.  

 
1 Although some bottom-up studies may include temporal extrapolations of demand drivers such as hardware shipments or projected 
service demand, where extrapolations are on bottom-up data (rather than proxies such as data traffic), we classify these as primarily 
‘bottom-up’ approaches. 
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4. Other: Other methods have occasionally also been deployed. They include actual 
top-down modelling methods (and not the aggregated totals often misnamed as 
such) such as quantitative system dynamics modelling (Schneider Electric, 2024) 
or economic input-output analyses. 

5. Hybrid approaches are where more than one of the above approaches is used and 
there is no clear predominant approach. For example, a hybrid estimate might 
combine aggregated country-level totals, combined with bottom-up data or 
extrapolation approaches.  

2.3.2 Modelling approaches – advantages and drawbacks 
Each of these methods has its advantages and drawbacks. Bottom-up models based 
on credible sources are considered to be high quality and offer strong explanatory 
power for assessing policy and technological effects. However, they are resource-
intensive due to significant data requirements. Additionally, their transparency is 
limited, as some data sources are often expensive or proprietary. Finally, with the 
advent of AI and general diversification of server types, scope extrapolations (see 
below) from some data centres to others become less reliable. 

Aggregated totals typically rely on credible sources of measured data or estimates (e.g. 
company data) and are generally considered to be of high quality. However, due to 
their limited scope, these studies may require some scope extrapolation (e.g. for full 
coverage of companies or countries – see below). They also do not typically 
disaggregate energy consumption sources and drivers within data centres (e.g. 
servers, infrastructure), limiting their ability to assess underlying drivers of 
technological developments and developing future projections.  

Temporal proxy extrapolation approaches are typically more transparent and relatively 
easy to generate and update. Their main disadvantages are their low explanatory 
power and a higher risk of misuse (e.g. developing exaggerated estimates from long-
term projections). Studies that rely primarily on temporal proxy extrapolations are 
generally considered to be of low quality, particularly for projections that extend 
beyond two or three years. 

As a complement to either of the methods above, scope extrapolation is often 
deployed for broader results. It is used to broaden the scope, e.g. by geographically 
scaling up the results, such as from a country to a continent or the world. It can also be 
used to broaden the scope from some companies to the entire market, e.g. based on 
market shares. 

Hybrid approaches can be used for corroborating results and to take advantage of the 
specific strengths of bottom-up and aggregated totals; they are at risk, however, to 
also combine both their drawbacks and to induce system boundary uncertainties and 
thus double-counting.  
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2.4 Extracting numerical results 
We extracted the numerical values for the yearly energy consumption from each study. 
In line with the vast majority of the literature, we only documented the operational 
energy consumption (i.e., the use phase), not production or end-of-life. We excluded 
blockchain and cryptocurrencies from the few assessments that did explicitly include 
it. 

In a large spreadsheet, we documented each study with its numerical values in a row, 
together with the starting and ending year of the assessment, the year used as base for 
future projections, if applicable. If the study had several scenarios (e.g., “best”, 
“expected”, “worse”), we documented each such scenario (along with its name) in a 
dedicated row of the spreadsheet. Likewise, if a source was simultaneously covering 
different geographies (e.g., Germany and the world) or different analytical scopes (e.g., 
DCs overall and AI only), each of these scopes was individually recorded. 

Each year between 2010 and 2030 was represented by a column, and all values within 
this range that were explicitly mentioned in the study were correspondingly 
documented. Years earlier than 2010 were not documented. For the few studies with 
projections beyond 2030, we documented their values every 5 years until 2050 (i.e., for 
2035, 2040, 2045, and 2050), but did not use this information further. 

When results were not explicitly numerical, but only implicitly in a graph, we use the 
WebPlotDigitizer tool (automeris.io, 2024) to approximate numerical values 
consistently, and as precisely as possible. 

If only GHG emissions were published, we converted them to electricity using each 
publication’s stated carbon intensity of electricity assumptions. For publications that 
did not include their own carbon intensity of electricity, we used carbon intensity data 
from the International Energy Agency and Our World in Data (IEA, 2023a; Our World in 
Data, 2024). 

2.5 Quality assessment 
To assess the quality of the reviewed studies, we considered several criteria, including: 

• The quality of the approach (or combination of approaches) deployed. 

• The quality, timeliness, and representativeness of the data sources used. 

• The severity of remaining data gaps and the appropriateness of the 
assumptions used to fill them. 

Although initially planned, it has proven challenging to define a rigid scheme for 
grading each of these criteria and then weighing them together. Along each of the 
dimensions, reality is complex and full of nuances, and at the same time the 
methodologies, assumptions and data sources used by the individual studies too 
diverse to devise objective conditions accounting for all of them.  

Moreover, even when studies use similar methods, data sources, and assumptions, it 
is still challenging to define objective criteria for their assessment. Hintemann and 
Hinterholzer (2019) and Malmodin et al. (2024), for example, both use the same 
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bottom-up approach (which will be discussed in Chapter 3) based on primary data of 
the highest-possible quality, but covering different geographies: Hintemann and 
Hinterholzer (2019) base their analysis on virtually all data centres in Germany, while 
Malmodin et al. (2024) collected data from major global data centre (DC) operators 
covering about 50% of all DCs in the world. Both studies then used geographic scope 
extrapolation to generalise from their sample to the whole world.  

When one study covers about 50% of worldwide DCs, while the other only reflects 
about 5% of them, the geographic extrapolation of the former is probably more 
reliable. But how much more reliable, how can the difference be quantified (as it is 
certainly not 10 times better)? And there are further subtleties: The geographically 
restricted study covers with a high degree of certainty all relevant DCs in Germany. 
Due to the sheer amount of data and the heterogeneity among companies in their 
system boundary definitions, data collection, and reporting, the uncertainties for the 
broader study are naturally higher, including the self-reported estimate of 50% 
coverage. One study is thus broader but with likely less precision, making an objective 
comparative quality assessment even more challenging. 

In such a complex reality, objective criteria may be insufficient because they attempt 
to simplify and quantify intricacies that cannot be fully captured by rigid standards. By 
presenting an illusion of certainty, these criteria can mislead decision-making, 
overlooking important nuances and unpredictable factors.  

Given these challenges in the objectification attempt of study quality, a different 
approach was ultimately deployed. Based on their extensive experience in the field, 
both authors independently and subjectively assessed the quality of each of the 
reviewed studies on a scale from 1 to 6 (‘low’, ‘low-medium’, ‘medium’, ‘medium-
high’, ‘high’, ‘very high’). Any differences in the independent assessments were 
discussed to arrive at a final consensus assessment.  

While some company-level and country-level data (such as national statistics) were 
assessed to be ‘very high’, no global studies were assessed to be ‘very high’ given the 
lack of comprehensive and official data. Studies without sufficient methodological 
detail could not be adequately assessed and were thus not ranked on the six-point 
scale. 

2.6 Deriving global estimates 
Chapter 4 derives global estimates of DC energy consumption for 2023 based on the 
literature. To achieve this goal, three different approaches were used. 

First, we focused on the higher-quality global estimates from the analysis, i.e. those 
categorised as ‘high’ in Section 3.1. These results are presented in Section 4.2. 

Second, we look at high quality estimates at the country and regional levels in Section 
3.2, aggregating them globally in Section 4.3. Finally, we analyse company-level data 
for 60 of the largest DC operators in the world, aggregating it globally in Section 4.4. 

These three complementary approaches of reaching global estimates for DC energy 
consumption based on different perspectives and data sources help to triangulate our 
final estimate for global data centre energy use in 2023. 
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3. Critical review 
National and regional governments and intergovernmental organisations such as the 
International Energy Agency (IEA) collect, validate, and publish official statistics on the 
energy use of many end-use sectors and services. However, most governments do not 
yet collect or publish official statistics on energy use by data centres. Instead, data 
centre energy consumption is typically included within the wider commercial buildings 
sector. 

In the absence of official national and international statistics and data, various 
organisations and researchers have estimated the energy use of data centres at 
national, regional, and global levels. These estimates have been derived using a range 
of modelling approaches, data sources, and assumptions. 

This chapter compiles and critically reviews data centre energy estimates published 
over the past 10 years. 

3.1 Global estimates 
We identified over 50 publications with global data centre energy estimates published 
since 2014. The published estimates and projections for global data centre energy use 
are wide-ranging. For example, estimates and projections for 2020 range by a factor of 
six (200–1 200 TWh), while projections for 2030 range by almost 40-times (210–
7 900 TWh) (Figure 3.1). 

These studies employ a wide range of methodologies and assumptions. Mytton & 
Ashtine (2022) conducted a critical and comprehensive review of these and other 
studies, covering a total of 46 publications. Their review notes several key flaws with 
some of the studies and identifies recommendations for future studies. 

Table 3.1 summarises key global studies, including a summary of methods and 
sources, results, and our quality assessment with a brief rationale. 
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Figure 3.1 Global data centre energy estimates and projections published since 2014 

 

Note: All published estimates are shown to illustrate the full range of estimates and projections. 
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Table 3.1 Overview of studies estimating global data centre energy use 

Institution and 
publications 

Summary Results Quality assessment 

Beijing Normal University; Global Energy Interconnection Development and Cooperation Organization (GEIDCO) 

Liu et al. (2020) Temporal proxy approach based primarily on 
assumptions and approach in Andrae and 
Edler (2015), with adjusted projections for 
PUE under different decentralisation 
scenarios. 

450-550 TWh in 2017 

Projection: 600-800 TWh in 2020 

Low – based primarily on 
temporal extrapolation 
approach. 

Borderstep Institute 

Hintemann and 
Hinterholzer (2020) 

Based primarily on bottom-up data centre 
market developments (primarily in Europe), 
technical characteristics of servers, storage, 
and networking (energy use, age) and data 
centre infrastructure (air conditioning, power 
supply, UPS), extrapolated geographically to 
the world. 

310-330 TWh in 2018  
(400 TWh including crypto) 

Medium-high – uses bottom-
up data and assumptions 
based on detailed studies for 
Germany; however, there is 
limited detail regarding data 
sources and assumptions at 
the global level. 

Hintemann and 
Hinterholzer (2022) 

 270-380 TWh in 2020  
(350-500 TWh including crypto) 

Boston Consulting Group (BCG) 

BCG (2025) Methodology not disclosed; sources are 
“BCG Global Data Center Model; expert 
interviews; MLPerf; Nvidia quarterly earnings; 
press releases; product datasheets”. 

43 GW in 2020 (377 TWh) 

60 GW in 2023 (526 TWh) 

Projection: 127 GW in 2030 
(1 113 TWh) 

N/A – cannot be assessed due 
to lack of methodological 
details. 

Deloitte 

Deloitte Global (2024) Bottom-up approach considering server 
types, IT equipment and energy efficiency 
trends based on IDC assumptions for 2024-
2030 and diffusion model (logistic growth 
assumptions) for 2030 to 2050. 

380 TWh in 2023 

Projections: 

700–970 TWh in 2030 

1 140–2 660 TWh in 2040 

1 680–3 550 TWh in 2050 

Medium-high – near-term 
assessment to 2030 uses 
credible market assumptions 
(IDC); long-term scenarios 
highly uncertain. 

Ericsson; Telia  

Malmodin and Lundén 
(2018) 

Hybrid estimate based on reported company 
data, benchmarking to other studies, and 
bottom-up data on hardware shipments. 

220 TWh in 2015  
(245 TWh including enterprise 
networks) 

High – relies on combination 
of company-level data 
covering most of the largest 
data centre operators in the 
world. Malmodin et al. (2024)  223 TWh in 2020 

Gas Exporting Countries Forum (GECF) 

Gas Exporting 
Countries Forum (2024) 

Temporal extrapolation under three efficiency 
and adoption scenarios (Low, Base, High) 
with historical numbers based on Goldman 
Sachs (2024). 

240 TWh in 2023 

Projections: 

510-730 TWh in 2025 

770-1570 TWh in 2030 

Low-medium – primarily a 
temporal extrapolation under 
different efficiency scenarios. 

Ghent University 

Van Heddeghem et al. 
(2014) 

Bottom-up methodology similar to Koomey 
(2008), multiplying the average power per 
server by the number of servers worldwide for 
three server classes, and adding electricity 
used by storage equipment, network 
equipment and switches, and infrastructure. 

270 TWh in 2012 Medium-high – uses bottom-
up approach split by server 
classes. 
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Institution and 
publications 

Summary Results Quality assessment 

Goldman Sachs 

Goldman Sachs (2024) Hybrid approach based on initial high range of 
IEA estimate for 2022 with temporal 
extrapolations of Cisco workload projections 
and efficiency improvement trends of 3% in 
base case. For AI energy use, combines 
projected AI server shipments (bottom-up) 
and power efficiency improvement of 8-15% 
per year (extrapolation). 

240 TWh in 2020 

350 TWh in 2022 

Projection: 740–1 400 TWh in 2030 

Medium – uses some bottom-
up drivers but also includes 
temporal extrapolation of 
efficiency.  

GreenIT.fr 

Bordage (2019) Based on the number of servers in operation 
and LCAs of three different data centres. 

312 TWh in 2019 Low – based on a small and 
unrepresentative set of 
assumptions. 

GSMA Intelligence 

GSMA Intelligence 
(2024) 

No methodology disclosed. 338 TWh in 2022 

Projections: 1.75-2% of global 
electricity use in 2030 (~650-
750 TWh) 

N/A – cannot be assessed due 
to lack of methodological 
details. 

Huawei 

Andrae & Edler (2015) Temporal proxy extrapolation with data centre 
IP traffic extrapolations and energy intensity 
per unit of IP traffic under three efficiency 
improvement scenarios (expected, best, 
worst). 

397 TWh in 2015 (“Expected” case) 

Projections: 

345-1200 TWh in 2020 

1140-8000 TWh in 2030 

 

Low – uses a poor proxy for 
energy consumption (data 
centre IP traffic) and unclear 
methodological basis for 
efficiency assumptions.   

Andrae (2019a) Updated IP traffic and energy efficiency 
assumptions from 2015 study, exploring 
additional scenarios of varying data traffic 
growth rates and efficiency improvement 
rates. 

220 TWh in 2015 

Base projections: 

299 TWh in 2020 

412 TWh in 2025 

974 TWh in 2030 

 

Low-medium – similar to 
Andrae & Edler (2015) but 
includes updated 
assumptions to reflect recent 
efficiency and traffic trends. 

Andrae (2019b) Updated IP traffic and energy efficiency 
assumptions from 2015 study. 

211 TWh in 2018 

Base projections: 

207 TWh in 2020 

429 TWh in 2025 

1 929 TWh in 2030  

Low-medium – similar to 
Andrae & Edler (2015) but 
includes updated 
assumptions to reflect recent 
efficiency and traffic trends. 

Andrae (2020) Further updated IP traffic and energy 
efficiency assumptions. Focuses on “Best” 
and “Expected” cases. 

196-299 TWh in 2020 

Projections: 

204-412 TWh in 2025 

366-974 TWh in 2030 

Low-medium – similar to 
Andrae (2019). 

IDTechEx 

IDTechEx (2025) Methodology not disclosed in summary, but 
report includes market forecast of thermal 
design power of CPUs and GPUs.  

150 TWh in 2015 

Projections:  

750 TWh in 2025 

2400 TWh in 2035 
 

N/A – cannot be assessed due 
to lack of methodological 
details. 
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Institution and 
publications 

Summary Results Quality assessment 

International Data Corporation (IDC) 

IDC (2023) Methodology not disclosed in summary, but 
appears to be a bottom-up estimate based on 
server shipments and analysis by data centre 
type and workload (IDC, 2024b). 

382 TWh in 2022 

Projection: 803 TWh in 2027 

High – uses bottom-up data 
and assumptions that reflect 
latest industry data and 
trends (IDC, 2024b). 

Graham (2024)  320 TWh in 2022 

Projection: 889 TWh in 2027 

IDC (2024c) Includes AI-specific analysis  350 TWh in 2023 (of which 33 TWh AI) 

Projection: 857 TWh in 2028 (of which 
146 TWh AI) 

 

International Energy Agency (IEA) 

IEA (2014) Methodology not disclosed. Reproduces 
results from Van Heddeghem et al. (2014) 
until 2012 (270 TWh), but estimate is 
considerably higher than an assumed 
continuation of 4.4% growth in Van 
Heddeghem et al. 

328 TWh in 2013 N/A – cannot be assessed due 
to lack of methodological 
details. 

IEA (2017) Global model based on an expansion of the 
US data centre energy model from Shehabi et 
al. (2016) and further updated for (Masanet et 
al., 2020)  

194 TWh in 2014 

Projection: 200 TWh in 2020 

High – bottom-up estimate 
based on server and other IT 
shipments and stock and 
region-specific PUEs 

4E EDNA (2019a) Temporal extrapolation based on initial 
assumptions from IEA (2017), projected into 
the future based on expected traffic growth 
from DCs to end users, and on expected 
efficiency gains. 

220 TWh in 2020 Low-medium – based on good 
initial assumptions but relies 
on temporal proxy 
extrapolation. 

IEA (2019, 2020, 2021, 
2022b, 2023b) 

Hybrid estimate based on the bottom-up 
modelling in IEA (2017) and Masanet et al. 
(2020) and global estimates by Hintemann 
and Hinterholzer (2022) complemented with 
reported energy consumption data from large 
data centre operators. 

200 TWh in 2018 

200-225 TWh in 2019 

200-250 TWh in 2020 

220-320 TWh in 2021 

240-340 TWh in 2022 

High – combines base 
estimates from IEA (2017) 
and Masanet et al. (2020) 
with company-level trends 
and other credible analysis. 

IEA (2024a) Extrapolates and combines regional 
estimates and projections from government-
affiliated reports from the US (Shehabi et al., 
2016), Europe (Montevecchi et al., 2020), and 
China (Fan, 2021). 

350 TWh in 2022 (460 TWh including 
crypto) 

Projection: 620-1 050 TWh in 2026 
(including crypto) 

Medium – uses older 
government estimates and 
projections from three largest 
data centre regions. 

IEA (2024b); Spencer 
and Singh (2024) 

2022 estimate from IEA (2023); methodology 
for projection not disclosed. 

240–340 TWh in 2022 (excl. crypto) 

Projection: 515 TWh in 2030 (range 
405-685 TWh, excluding crypto) 

N/A – cannot be assessed due 
to lack of methodological 
details. 

International Telecommunications Union (ITU); World Bank 

ITU (2020) Based primarily on IEA (2017), supplemented 
by Malmodin and Lundén (2018), Shehabi et 
al. (2016) and Fuchs et al. (2017). 2030 
projection based on Andrae (2019). 

220 TWh in 2015 

Projections: 

230 TWh in 2020 

411 TWh in 2030 

High – 2015 and 2020 values 
rely on other high-quality 
studies. 

World Bank & ITU 
(2024) 

Analysis based on company-reported data of 
large colocation, cloud, and content data 
centre operators. Non-reporting companies 
are extrapolated based on revenue share of 
reporting companies. 

195 TWh in 2022 from colocation 
(110 TWh), cloud (53 TWh), and 
content (32 TWh) data centres  

Medium – high data quality 
but excludes enterprise data 
centres. 
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Institution and 
publications 

Summary Results Quality assessment 

Jeffries 

Jeffries (2024) Combines regional aggregated data centre 
capacity estimates from various sources with 
extrapolation based on own assumptions (10-
15% annual growth) and bottom-up estimate 
based on market-level data from industry and 
broker reports and press releases from 
hyperscalers. Results disaggregated by 
region. 

319 TWh in 2020 

418 TWh in 2022 

524 TWh in 2023 

Projections: 

766 TWh in 2025 

1 492 TWh in 2030 

Medium – combines two 
approaches and various data 
sources. 

Lawrence Berkeley National Laboratory (LBNL); Northwestern University; University of California Santa Barbara 

Masanet et al. (2020) Bottom-up estimate based on shipment data 
for servers, drives, networking, their energy 
use characteristics and lifetimes, combined 
with assumptions for each type of data centre 
class and region-specific PUE. 

194 TWh in 2010 

205 TWh in 2018 

High – detailed bottom-up 
analysis based on best 
available data with region-
specific assumptions. 

Liebreich Associates  

Liebreich (2025) No methodology disclosed. 1.5% of current global electricity use 
(~400 TWh) 

Projection: 2.2% in 2030 (~750 TWh) 

N/A – cannot be assessed due 
to lack of methodological 
details. 

McMaster University 

Belkhir and Elmeligi 
(2018) 

Extrapolates data centre energy use estimate 
for 2008 from Vereecken et al. (2010) 
increasing by 12% per year based on a market 
research company’s projection to 2040. 

704 TWh in 2017 

Projections: 

990 TWh in 2020 

3 070 TWh in 2030 

9 550 TWh in 2040 

Low – simplistic temporal 
extrapolation based on trends 
from ~2010 which are 
assumed to continue to 2040. 

Schneider Electric 

Schneider Electric 
(2021) 

Bottom-up estimate based on workloads, 
data storage requirements, and global 
average PUE. Results split by compute, 
storage, and “DC infrastructures”.  

284 TWh in 2015 

341 TWh in 2020 

Projections:  

429 TWh in 2023 

719 TWh in 2030 

Medium-high – uses bottom-
up approach and 
assumptions.  

Schneider Electric 
(2023) 

Assumes AI power demand to grow at a CAGR 
of 25% to 33% until 2028.  

500 TWh in 2023 (40 TWh for AI) 

Projection: 815 TWh in 2028 (122–
165 TWh for AI) 

N/A – cannot be assessed due 
to lack of methodological 
details. 

Semianalysis    

Semianalysis (2024) Detailed analysis based on analysis of over 
3 000 colocation and hyperscale data centres 
in North America, construction and satellite 
data, and bottom-up shipment data and 
forecasts of AI accelerators. 

375 TWh in 2022 

Projection: 725-2 100 TWh in 2030 

High – uses detailed data 
from a combination of 
sources and across multiple 
regions. Assumes relatively 
high utilisation rates and PUE 
which may overstate energy 
use. 

TD Securities 

TD Securities (2024) Bottom-up estimate based on projected 
shipments of AI accelerators and CPUs 
shipped, and replacement of existing 
equipment. 

0.8% of global electricity use in 2018 
(180 TWh) 

Projection: 2.9% of global electricity 
use in 2028 (~830 TWh) 

Medium - uses some bottom-
up data and modelling 
approaches 
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Institution and 
publications 

Summary Results Quality assessment 

Thunder Said Energy 

Thunder Said Energy 
(2025) 

Temporal extrapolation based on 
extrapolated energy intensity of data centres 
(of all internet traffic). 

800 TWh in 2022 

Projections:  

2 000 TWh in 2030 (of which 900 TWh 
for AI) 

3 750 TWh in 2050 

Low – simplistic temporal 
extrapolation using energy 
intensity of not just data 
centres but all internet traffic. 

The Shift Project 

The Shift Project (2019) Based on the model developed by Andrae & 
Edler (2015) with updated assumptions and 
scenarios. 

559-593 TWh in 2017 

Projections: 

650-900 TWh in 2020 

760-2040 TWh in 2025 

Low – generally the same 
approach as Andrae & Edler 
(2015). 

The Shift Project (2021) Updates assumptions from the 2019 study. 393 TWh in 2019  
(438 TWh including crypto) 

Projection: 560-740 TWh in 2025 
(including crypto; non-crypto not 
specified) 

Low-medium – same as 
above but reflects updated 
trends in technology 
development and efficiency. 

The Shift Project (2024) Updates assumptions from the 2019 and 
2021 studies under three scenarios: Meta-
métavers, Conservative, and Growth. 

420 TWh in 2019 

Projections:  

556-656 TWh in 2025 

771-1204 TWh in 2030 

Low-medium – same as 
above but reflects updated 
trends in technology 
development and efficiency. 

University of Twente 

Koot and Wijnhoven 
(2021) 

Hybrid approach combining top-down 
indicators and bottom-up data (e.g. 
workloads per application). 

286 TWh in 2016 

240-275 TWh in 2020 

Projections: 

260-360 TWh in 2025 

320-660 TWh in 2030 

Medium – initial assumptions 
based on Masanet et al. 
(2020) but includes some 
temporal extrapolation of 
demand drivers. 

Note: For projections that only state the share of global electricity use (rather than a total in TWh), the absolute electricity use is estimated 
based on projected electricity demand in the IEA World Energy Outlook 2024 Stated Policies Scenario (STEPS) (IEA, 2024b). 
Source: Extends analysis from Kamiya and Bertoldi (2024) and UNCTAD (2024). 
 

Focusing on estimates and projections for 2022, published estimates range from 
around 200 TWh to over 1 000 TWh (Figure 3.2). The highest values – and with the 
widest ranges in scenarios – come from studies that have used temporal proxy 
extrapolation approaches. It is also notable that some authors have significantly 
lowered their projections in more recent publications, with their latest values between 
200–550 TWh for 2022 compared with 400–1 700 TWh in Andrae & Edler (2015) and 
700–1 100 TWh in Shift Project (2019). 
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Figure 3.2 Selected estimates and projections of global data centre electricity use in 2022 

 

Note: 2022 estimates as published or extrapolated from available data, except point estimate from Hintemann & Hinterholzer (for 2021). 
Values exclude energy use from cryptocurrencies. Error bars indicate range of scenario estimates for each study. 
Sources: Andrae, 2020; Andrae & Edler, 2015; BCG, 2025; Belkhir & Elmeligi, 2018; Deloitte Global, 2024; EDNA, 2019a, 2019b; Goldman 
Sachs, 2024; IDC, 2024c; IEA, 2023b, 2024a; ITU, 2020; Jeffries, 2024; Koot & Wijnhoven, 2021; Liu et al., 2020; Malmodin et al., 2024; 
Masanet et al., 2020; Schneider Electric, 2021; Semianalysis, 2024; The Shift Project, 2019, 2021b, 2024; World Bank & ITU, 2024. 
 

3.2 Regional and country-level estimates 
This section reviews available regional and country-level estimates. Of the studies with 
global estimates on data centre energy use discussed above, only four – IDC, (2023), 
IEA (2024a), Jeffries (2024), Masanet et al. (2020) – present disaggregated results for 
multiple regional markets. 

The review focuses primarily on the three largest data centre markets of United States, 
Europe, and China, which account for over 80% of data centres worldwide (Baxtel, 
2024; Cisco, 2018; Cloudscene, 2024; Cushman & Wakefield, 2023; Data Center Map, 
2024; DATACENTE.RS, 2024; Datacentres.com, 2024; Synergy Research Group, 
2024a). One market intelligence firm estimates that the US accounted for around half 
of global hyperscale data centre IT capacity as of Q4 2023, followed by Europe (17%) 
and China (16%) (Synergy Research Group, 2024a). 
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3.2.1 United States 
The most comprehensive bottom-up analyses of United States (US) data centre energy 
use have been led by researchers at the Department of Energy’s Lawrence Berkeley 
National Laboratory (LBNL). In 2016, they estimated that data centres consumed 70 
TWh in 2014 (1.8% of national electricity use) and could rise to 73 TWh by 2020 based 
on ‘current trends’ (Shehabi et al., 2016, 2018). These results are reflected in Masanet 
et al. (2020), which extends the LBNL analysis globally. 

An updated study was published in December 2024, with estimated data centre energy 
use (excluding crypto) of 178 TWh in 2023 (4.4% of national electricity use), of which 40 
TWh was consumed by AI-specialised servers (Shehabi et al., 2024). The report 
projects a range of 325–580 TWh in 2028 (of which 165–325 TWh for AI-specialised 
servers), equivalent to 6.7–12% of forecasted national electricity use in 2028. 

With the rapid rise of AI and concerns about their impacts on energy use over the past 
two years, consultancies, investment banks, and industry associations have published 
estimates and projections of US data centre energy use. Some have significantly 
revised their estimates and projections, with projections for 2030 more than twice as 
high in the most recent reports. For example, McKinsey’s January 2023 report 
projected data centre capacity of 35 GW in 2030, revised to nearly 60 GW (quoted in 
the Economist in January 2024), and to more than 80 GW in their latest September 
2024 report – over two times higher than their initial projection from just 20 months 
earlier (McKinsey, 2023, 2024a; The Economist, 2024).  

Boston Consulting Group (BCG) have also significantly revised both their current 
estimates and 2030 projections. In their September 2023 report, they estimated data 
centres in the US consumed 126 TWh for 2022, while their June 2024 report estimates 
data centres consumed nearly three times more in 2024 (325 TWh) – roughly in the 
range of their 2030 projection from the September 2023 report (BCG, 2023, 2024; Lee, 
2023, 2024). Their 2030 projections more than doubled from 335–390 TWh in their 
September 2023 report to 800–1 050 TWh in their June 2024 report. 

The results for the US studies are summarised in Figure 3.3 and detailed in Table 3.2. 
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Figure 3.3 US data centre energy estimates and projections, 2015-2030 

 

Note: Darker circles indicate historical estimates; lighter circles and dotted lines indicate projections. Error bars indicate ranges included in 
scenarios. Values exclude cryptocurrencies.  
 

 

Semianalysis (2024)

BCG (2024)

BCG (2024)

S&P Global MI (2024)

Shehabi et al. (2024)

Shehabi et al. (2024)

McKinsey (2024)

IEA (2024)

Jeffries (2024)

IDC (2024)

Liebreich (2025)

Goldman
Sachs (2024)

BCG (2023)

EPRI (2024)

0

 200

 400

 600

 800

1 000

2015 2020 2025 2030

TW
h

Semianalysis (2024)

Guidi et al. (2024)

BCG (2024)

S&P Global MI  (2024)

Shehabi et al.  (2024)

McKinsey (2024)

IEA (2024)

Jeffries (2024)

IDC (2024)

Liebreich (2025)

Goldman Sachs (2024)

S&P Global (2024)

S&P Global CI (2024)

BCG (2023)

Rhodium Group (2024)

TD Securities (2024)

EPRI  (2024)



 22 

Table 3.2 Overview of studies estimating the energy use of US data centres 

Institution and 
publications 

Summary  Results Quality assessment 

Boston Consulting Group (BCG) 

BCG (2023); Lee (2023) Assumes 35-40% of current data centre 
energy use comes from US, based on share of 
DCs globally, but no source disclosed. 
Methods and assumptions for 2030 
projections not clear. 

74 TWh in 2020 

126 TWh in 2022 

Projection: 335–390 TWh in 
2030 with GenAI 

Low – based on a simplistic 
assumption of US share of global 
total. 

BCG (2024); Lee (2024) Unclear methodology. Appears to use bottom-
up GPU supply data to estimate total power 
demand and power consumption. Low case 
constrained by current and planned DC 
infrastructure; high case is hardware 
constrained based on GPU supply. 

325 TWh in 2024 

Projections:  

425–475 TWh in 2026 

625–700 TWh in 2028 

800–1 050 TWh in 2030 

Low – appears to use the incorrect 
baseline figure for 2024 and 
assumed utilisation rates are too 
high (85-87%). Low range 2029 
figure (525 TWh) appears to be a 
typo. 

Electric Power Research Institute (EPRI) 

EPRI (2024) Historical and baseline figures based 
primarily on LBNL model results (Koomey, 
2011; Masanet et al., 2020; Shehabi et al., 
2016, 2018). Projections based on differing 
assumed annual growth rates ranging from 
3.7% (low growth) to 15% (higher growth) 
based on projected financial growth of data 
centres, ‘expert assessment’, and McKinsey 
projections. 

152 TWh in 2023 

Projections: 

170–230 TWh in 2026 

180–310 TWh in 2028 

200–405 TWh in 2030 

Low-medium – considers current DC 
electricity use at state level, but 
projects these into the future using 
the same growth rates across all 
states, despite the pace of growth is 
likely to be quite different. 

Goldman Sachs 

Goldman Sachs (2024) Global estimate based on initial high range of 
IEA estimate for 2022, Cisco workload 
projections, efficiency improvement trends of 
3% in base case. Unclear how this is 
downscaled to US estimates. 

146 TWh in 2023 (of which 
4 TWh AI) 

Projection: 397 TWh in 2030 
(of which 93 TWh for AI) 

N/A – cannot be assessed due to 
lack of methodological details for 
US analysis. 

Harvard University, University of Pisa, Environmental Systems Research Institute, Baxtel, UCLA 

Guidi et al. (2024) Data on over 2,000 data centres from Baxtel 
(location and type), combined with available 
data on area and power capacities to model 
total power capacity. Assumes the same 
utilisation rate (75%) for all data centre types. 

193 TWh in 2023 Medium – based on some site-level 
data but assumes a high utilisation 
rate (75%) which likely 
overestimates total energy use. 

International Data Corporation (IDC) 

Graham (2024); IDC 
(2024a, 2024c) 

Methodology not disclosed in summary, but 
appears to be a bottom-up estimate based on 
server shipments and analysis by data centre 
type and workload (IDC, 2024b). 

90 TWh in 2019 (“Americas”) 

155 TWh in 2023 (“Americas”) 

Projection: 385 TWh in 2028 

High – uses bottom-up data and 
assumptions that reflect latest 
industry data and trends (IDC, 
2024b). 

International Energy Agency (IEA) 

IEA (2024) Combines estimates from Shehabi et al. 
(2016) and blockchain energy use. Unclear 
method to extrapolate figures to 2022 and 
project to 2026. 

200 TWh in 2022 (incl. crypto) 

Projection: 260 TWh in 2026 
(including crypto) 

Low-medium – detailed 
methodology not disclosed. 

Jeffries 

Jeffries (2024) Cites NextEra Energy citing McKinsey and 
projects 15% CAGR in data centre power 
demand between 2023 and 2030. 

180 TWh in 2023 

Projection: 530 TWh in 2030 

Low-medium – lack of details 
regarding methodology but appears 
to be a temporal extrapolation. 
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Institution and 
publications 

Summary  Results Quality assessment 

Lawrence Berkeley National Laboratory (LBNL); Northwestern University; University of California Santa Barbara 

Masanet et al. (2020); 
Shehabi et al. (2016, 
2018) 

Bottom-up estimate based on shipment data 
for servers, drives, networking, their energy 
use characteristics and lifetimes, combined 
with assumptions for each type of data centre 
class and region-specific PUE. 

70 TWh in 2014 

73 TWh in 2020 (current 
trends projection) 

High – detailed bottom-up analysis. 

Shehabi et al. (2024) Similar methodology of previous studies, with 
updated input assumptions from IDC, Omdia, 
Dell’Oro, and S&P Global and in-depth 
analysis of AI-specialised servers. 

178 TWh in 2023 (of which 
40 TWh for AI-specialised 
servers) 

Projections: 

185–230 TWh in 2024 (50–
75 TWh for AI) 

325–580 TWh in 2028 (165–
325 TWh for AI) 

High – detailed bottom-up analysis. 

Liebreich Associates  

Liebreich (2025) No methodology disclosed. 5% of current US electricity 
use (~200 TWh) 

Projection: over 9% in 2030 
(~450 TWh) 

N/A – cannot be assessed due to 
lack of methodological details. 

McKinsey & Company 

McKinsey (2023) No methodology disclosed. Mentions typical 
data centre uses 40% of its energy on cooling, 
i.e. implied PUE of 1.67. 

17 GW capacity in 2022 

19 GW capacity in 2023 

Projection: 35 GW capacity in 
2030 

N/A – cannot be assessed due to 
lack of methodological details. 

As cited in The 
Economist (2024) 

No methodology disclosed.  20 GW capacity in 2022 

22 GW capacity in 2023 

24 GW capacity in 2024 

Projection: 57 GW capacity in 
2030 

N/A – cannot be assessed due to 
lack of methodological details. 

McKinsey (2024) No methodology disclosed. Includes both 
assumed capacity and total electricity use. 

147 TWh in 2023 

178 TWh in 2024 (25 GW 
capacity) 

Projection: 606 TWh in 2030 
(80 GW in 2030) 

N/A – cannot be assessed due to 
lack of methodological details. 

Rhodium Group 

Rhodium Group (2024) Initial estimate based on literature review, and 
extrapolates three growth scenarios (low, mid, 
high) for data centres to 2030 and 2035. 

~150 TWh in 2023 (estimated 
based on available 
information in Technical 
Annex) 

Projections: 

2030: low (+85% from 2023), 
mid (+110%), high (+160%) – 
estimated to be 
270/310/390 TWh in 2030 

2035: low (+140% from 2023), 
mid (+180%), high (+260%) – 
estimated to be 
350/410/540 TWh in 2035 

N/A – cannot be assessed due to 
lack of details regarding the basis of 
the base year estimate and 
scenarios. 
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Institution and 
publications 

Summary  Results Quality assessment 

Rystad Energy 

Rystad Energy (2024) No methodology disclosed. Includes energy 
consumption by chip foundries. 

140 TWh in 2024 (including 
semiconductor 
manufacturing) 

Projection: 307 TWh in 2030 
(including semiconductor 
manufacturing) 

N/A – cannot be assessed due to 
lack of methodological details. 

S&P Global 

S&P Global Commodity 
Insights (2024) 

Uses existing data centre load as a ‘base’ and 
adds incremental data centre load based on 
utility forecasts from regional electricity 
system operators. 

185 TWh in 2023 

Projections:  

355-385 TWh in 2030 

380-440 TWh in 2035 

Medium –relies on utility forecasts 
but may include double-counted 
projects (requests to multiple grid 
operators) and excludes not yet 
submitted proposals. 

S&P Global Market 
Intelligence (2024) 

Appears to be based on planned data centre 
space and power consumption, presenting 
current (2023) and projected (2028) IT 
capacity by cluster. 

Projections: 

Over 280 TWh in 2024 

530 TWh in 2028 

N/A – cannot be assessed due to 
lack of methodological details. 

S&P Global (2024) Reviews other projections of US data centre 
power demand increase from 2023 to 2030. 
Unclear how the authors’ projections were 
developed. 

170 TWh in 2024 

Projection: 340-420 TWh in 
2030 (7.5-8.75% of US 
electricity use) 

N/A – cannot be assessed due to 
lack of methodological details. 

Semianalysis 

Semianalysis (2024) Bottom-up analysis based on analysis of over 
3 500 existing and planned colocation and 
hyperscale data centres in North America, 
combined with other data. 

133 TWh in 2020 

196 TWh in 2023 

Projection: 672 TWh in 2028 

High – detailed bottom-up analysis. 

TD Securities 

TD Securities (2024) Bottom-up estimate based on projected 
shipments of AI accelerators and CPUs 
shipped, and replacement of existing 
equipment.  

1.5% of US electricity use in 
2018 (58 TWh) 

6.6% in 2028 (~270 TWh) 

Medium – uses some bottom-up 
data and modelling approaches. 

 

3.2.2 Europe 
Several studies have estimated European data centre energy consumption over the 
past decade, with wide-ranging results. For example, estimates for the European 
Union for 2020 range from 40 TWh to 104 TWh, while projections for 2030 range from 
around 50 TWh to 265 TWh (Figure 3.4).  

The large range in these studies stems from substantial differences in data sources, 
assumptions, and methodologies, which are summarised in Table 3.3 and discussed 
in-depth in Kamiya & Bertoldi (2024). However, the lack of details and documentation 
regarding assumptions and methodology makes it difficult to compare underlying 
differences, and how they contribute to diverging estimates. 



 25 

Figure 3.4 Summary of European Union data centre energy estimates, 2010–2030 

 

Note: Darker circles indicate historical estimates; lighter circles and dotted lines indicate projections. Error bars indicate ranges included in 
scenarios. Values exclude cryptocurrencies. 
 

Table 3.3 Overview of studies estimating the energy use of data centres in Europe 

Author / Publication Summary  Results Quality assessment 

Bashroush (2018) Methodology not disclosed. 130 TWh in 2017 N/A – cannot be assessed 
due to lack of 
methodological details. 

Beyond Fossil Fuels (2025) Initial estimates for EU27 based on IEA (2024a) 
based on Montevecchi et al. (2020) with 
continuation of growth rates from IEA (2024a) to 
2030 for “high demand” and from McKinsey (2024) 
for “low demand”. UK estimates and projections 
based on National Grid ESO. 

104-110 TWh in 2022 (EU27 
+ UK) 

Projection: 218-287 TWh in 
2030 (EU27 + UK) 

Low-medium – initial 
estimate for EU27 likely too 
high, combined with high 
growth rates to 2030 yields 
much higher projections for 
2030 compared to original 
sources. 

BloombergNEF et al. (2021) Bottom-up estimate of colocation and hyperscale 
data centres based on data on installed data centre 
capacity in each country, public announcements, 
assumed rack capacities, and lease rates. 

26 TWh in 2021 for 
Germany, Ireland, 
Netherlands, Norway, and 
the United Kingdom  

Medium-high – high quality 
analysis but limited 
geographic scope and 
excludes small data centres. 

Bio by Deloitte and 
Fraunhofer IZM (2014) 

Prepared for DG GROW 

Bottom-up estimate based on detailed market data 
(e.g. server shipments) and informed hardware 
assumptions. The study also explores six scenarios 
over the period to 2030. 

78 TWh in 2015 for EU28 High – detailed and 
comprehensive study using 
available market data. 

Dodd et al. (2020) 

Co-authored by the EC JRC 
Product Bureau and 
consultants 

Estimate based on data from 2013 data from DCD 
supplemented by surveys on data centre area, 
installed capacities, and other studies from the US 
and Europe including the Code of Conduct.  

74 TWh in 2015 

104 TWh in 2020 for EU27 

Projections: 134 TWh in 
2025 and 160 TWh in 2030 

Low – based on outdated 
and limited data. 
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Author / Publication Summary  Results Quality assessment 

ICIS (2024) Initial (2024) estimates appear to be aligned with 
Kamiya & Bertoldi (2024), but not cited. No details 
on how future energy use is projected. 

96 TWh in 2024 

Projections: 168 TWh in 
2030 and 236 TWh in 2035 

N/A – cannot be assessed 
due to lack of 
methodological details. 

IEA (2024a) Hybrid estimate based on extrapolated values from 
Montevecchi et al. (2020) and country-level data 
and projections from Ireland and Denmark. 

95 TWh in 2020 and 
145 TWh in 2026 

Medium – uses reliable 
studies for initial estimate 
but includes temporal 
extrapolation. 

Kamiya and Bertoldi (2024) 

Prepared by EC JRC 

Hybrid estimate combining country-level data 
centre energy use estimates where available, 
supplemented with other relevant and updated 
assumptions. 

45-65 TWh in 2022 High – comprehensive and 
based on best available 
country-level data. 

Masanet et al. (2020) Bottom-up estimate based on stock and shipment 
data for servers, drives, networking, their energy 
use characteristics and lifespans, combined with 
assumptions for each type of data centre class and 
region-specific PUE. 

39.4 TWh in 2018 for 
Western Europe 

Medium – some 
assumptions based on US 
data and characteristics. 

McKinsey (2024b) Hybrid estimate based on initial 2023 estimates 
based on Kamiya & Bertoldi (2024) extrapolated 
with IT capacity projections from DCByte and 
proprietary McKinsey model. 

62 TWh in 2023 for EU27+UK 

150 TWh in 2030 for 
EU27+UK 

Low-medium – solid basis 
for initial estimate, but 
uncertain data sources used 
in extrapolation. 

Montevecchi et al. (2020) 

Prepared for DG CONNECT 
by Environment Agency 
Austria and Borderstep 
Institute 

Bottom-up estimate based on data centre market 
developments, technical characteristics of servers, 
storage, and networking (energy use, age) and data 
centre infrastructure (air conditioning, power 
supply, UPS). 

76.8 TWh in 2018 for EU28 
(2.7% of EU28) 

Projections (“Trend” 
scenario): 92.6 TWh in 2025 
and 98.5 TWh in 2030 

Medium-high – uses detailed 
region-specific data. 

Prakash et al. (2014) 

Prepared for DG CONNECT 
by Öko-Institut and TU Berlin 

Bottom-up estimate based on server shipment data 
(and assumed server stock) and average 
assumptions for PUE, server utilisation rate, and 
share of IT energy for networking and storage. 

52 TWh in 2011 

Projection: 70 TWh in 2020 

Medium-high – uses detailed 
data. 

VHK and Viegand Maagøe 
(2020) 

Prepared for DG ENER 

Based on Masanet et al. (2020).  39.5 TWh in 2020 for EU27 Medium – same as Masanet 
et al. (2020). 

Source: Based on Kamiya & Bertoldi (2024) with additional studies published since January 2024. 
 

In addition to estimates at the European Union level, there have been numerous 
country-level estimates published in recent years. These studies have been 
catalogued and reviewed in the most recent estimate prepared by the Joint Research 
Centre (JRC) in 2024, which estimated data centre energy consumption in the EU-27 in 
2022 amounted to 45–65 TWh (Kamiya & Bertoldi, 2024). The study derived its estimate 
based on 15 country-level data centre energy use estimates supplemented with other 
relevant indicators and updated assumptions. 

Three non-EU countries – the United Kingdom, Norway, and Iceland – also have 
notable data centre sectors. In the United Kingdom, its electricity system operator 
National Grid estimated that data centres used 4–7 TWh of electricity in 2020, 
equivalent to 1.3–2.5% of national electricity use (National Grid ESO, 2022). 
BloombergNEF estimates that colocation and hyperscale data centres in the United 
Kingdom used 7.2 TWh in 2021 (BloombergNEF et al., 2021). The most recent National 
Grid Future Energy Scenarios estimated that data centres used 3.5–5 TWh of electricity 
in 2023, or 0.4–0.5% of national electricity use (National Grid ESO, 2024). A recent 
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study, based on assumptions from (Ademe & Arcep, 2022; Dodd et al., 2020; 
Montevecchi et al., 2020), estimated a much higher figure of 13 TWh (4% of national 
electricity), while acknowledging the data sources are of low to medium confidence 
(Lannelongue et al., 2024). In June 2024, National Grid CEO John Pettigrew projected 
that data centre energy use would increase six-fold over the next decade, driven by AI 
and quantum computing (BBC, 2024; Pettigrew, 2024). The underlying projections from 
National Grid indicate that data centres could use 10–22 TWh in 2030, or 1–2% of 
national electricity use in 2030 (National Grid ESO, 2024). 

In Norway, the Norwegian Water Resources and Energy Directorate (NVE) estimate 
that data centres in Norway consumed 1.5 TWh in 2023 (1.1% of national electricity) 
(NVE, 2024). The report projects data centres to consume 3.5 TWh in 2028 (2.3%). 
BloombergNEF estimates that colocation and hyperscale data centres in Norway used 
0.7 TWh in 2021 (BloombergNEF et al., 2021). 

In Iceland, the National Electricity Regulatory Authority estimates that data centres 
accounted for 1.1 TWh in 2023 (5.5% of national electricity) and 1.4 TWh in 2024 (6.7%) 
(Orkustofnun, 2024). By 2050, data centre energy use is projected to grow to 3.3 TWh 
(12.5% of national electricity use) in the “Business as Usual” scenario and 6 TWh (15%) 
in the “High Forecast” scenario. 

3.2.3 China 
In China, there have been several published estimates of data centre energy 
consumption over the past five years, with estimates in the range of 150–270 TWh for 
2020 to 2023 (China Academy of Information and Communications Technology, 2023; 
Fan, 2021; Greenpeace East Asia, 2021; Greenpeace East Asia & North China Electric 
Power University, 2019; Jeffries, 2024; Li et al., 2024). While some studies note that 
these figures include 5G networks, the lack of details regarding methodologies and 
scope make it unclear whether 5G mobile networks (or data networks in general) are 
included within the scope of these figures. A recent article from the Development 
Research Center of the State Council (2024), citing the China Academy of Information 
and Communications Technology (CAICT), stated that the national digital industry 
consumed 370 TWh in 2022, with data centres accounting for 76.6 TWh. 

An in-depth analysis by IEA published in February 2025 estimated that data centres in 
China likely consumed 70–130 TWh of electricity in 2023, with data transmission 
networks (including 5G) consuming another 100 TWh (IEA, 2025). The analysis relied on 
published energy consumption data reported by many of the largest Chinese data 
centre operators, along with bottom-up modelling of hardware shipments. The report 
also projects data centres in China could consume 180–340 TWh in 2027 and 260–470 
TWh in 2030. 

Other organisations have previously also published projections, most in the range of 
300–400 TWh by 2030 (CAICT, 2023; Fan, 2021; Li et al., 2024; Open Data Center 
Committee, 2022; Xie et al., 2024). Others have projected much higher figures, 
including the Chinese Electronics Standardisation Institute (600 TWh by 2030) 
investment bank Jeffries (1 000 TWh by 2030) (CESI, 2022; Jeffries, 2024). 



 28 

3.2.4 Other countries and regions 
In Japan, data centres account for 10–20 TWh, or 1–2% of national electricity 
consumption (CRIEPI, 2024; Deloitte Tohmatsu MIC Research Institute, 2022; Japan 
Atomic Industrial Forum, 2024; Nikkei, 2022). The Central Research Institute of Electric 
Power Industry (CRIEPI) recently projected that data centre energy use could rise to 
around 40–110 TWh by 2040 and 45–210 TWh by 2050 (CRIEPI, 2024; Take, 2024). 

In Australia, data centres currently use an estimated 8–12 TWh (3–5% of national 
electricity use) according to investment banks Morgan Stanley and UBS (Hannam, 
2024; Kitchen, 2024). Both banks project a rapid increase to 2030, with UBS projecting 
a more than doubling to 28 TWh by 2030, while Morgan Stanley projects a range of 14–
43 TWh. 

In India, data centres consumed around 2 TWh in 2014, or 0.2% of national electricity 
use (IEA, 2017). The IEA projected this could grow to around 3 TWh by 2020. Investment 
bank Jeffries estimated data centres used 6–9 TWh in 2023 and projected a 12-fold 
growth in data centre capacity to 17 GW by 2030, with data centres projected to use 
6% of national electricity use (Jeffries, 2024). A November 2024 report from investment 
bank Nomura estimates that data centres currently consume 8.4 TWh of electricity 
(0.5% of national electricity use) and projects this to grow to 66 TWh by 2030 in its base 
case (3% of national electricity use) and 80 TWh in its bull case (Nomura, 2024). These 
figures correspond to assumed installed capacities of 960 MW today and 7.5 GW and 
9 GW in 2030, roughly half of Jefferies’ 2030 projections (17 GW). Cushman & 
Wakefield projects colocation data centre capacity of 5 GW by 2028 (Vij, 2024). 

In Singapore, data centres accounted for 3.4 TWh, equivalent to around 7% of national 
electricity consumption in 2020 (Singapore Ministry of Communications and 
Information, 2021). The latest energy statistics show that the “Information and 
Communications” subsector (which likely includes data centres and data 
transmission networks), accounted for 4.9 TWh in 2022 (8.8% of national electricity 
use), 5.4 TWh in 2023 (9.8%), and 2.9 TWh over the first half of 2024 (10.3%) (Singapore 
Energy Markets Authority, 2023, 2024). This means that the ICT subsector has 
accounted for nearly half of the net growth in national electricity consumption, growing 
at an average compound annual rate of 18% since 2020 compared with less than 2% 
for all other subsectors. Subtracting electricity consumption from telecommunication 
networks (0.4 TWh based on company data), data centres consumed around 5 TWh in 
2023. An industry report from 2021 projected that data centres would account for 12% 
of national electricity use by 2030 (Bain et al., 2021). 

Other significant and growing data centre markets in Asia include South Korea and 
Malaysia, with 0.7–1.3 GW and 0.4 –0.7 GW of data centre capacity respectively 
(Cushman & Wakefield, 2024; Kerner, 2024; Savills, 2024b, 2024a). There have not 
been any public estimates of data centre energy consumption in either country. Based 
on the estimated capacities above, data centres likely consume 3–5 TWh in South 
Korea and 2–3 TWh in Malaysia. 

In Canada, data centres likely consume 3–6 TWh, equivalent to 0.5–1% of national 
electricity use (Government of Canada, 2024; Natural Resources Canada, 2013). 
According to the Royal Bank of Canada, current data centre capacity is 750 MW and 
with over 14 GW of capacity proposed to electricity regulators by 2030 (Merwat, 2024). 
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In Ontario, the largest market, the transmission system operator IESO has projected 
that data centres could consume 8.4 TWh by 2035 (4% of projected provincial 
electricity demand) (IESO, 2024). In the second largest market of Quebec, data centres 
consumed around 1.3 TWh in 2023 with projected growth of 4 TWh to 2032 (Energyzt, 
2022; Hydro-Québec, 2022). 

In Latin America, the largest data centre markets of Brazil, Chile, and Mexico have a 
combined IT capacity of around 700 MW (White & Case LLP, 2024), likely accounting 
for around 2–3 TWh of electricity use annually.  

In Africa, the vast majority of the 300 MW of data centre capacity today is located in 
South Africa, Kenya, and Nigeria (African Data Centres Association, 2024). data 
centres consumed 1–2 TWh in 2020, projected to rise to 5–8 TWh by 2030 (IEA, 2022a; 
Open Access Data Centres (OADC), 2023; Xalam Analytics, 2022). 

In the Middle East, the United Arab Emirates and Saudi Arabia have the largest data 
centre sectors, each with around 300 MW of capacity (Cushman & Wakefield, 2025; 
Roland Berger, 2024). 

3.3 Artificial intelligence 

3.3.1 AI energy use 
One of the biggest drivers of near-term growth in data centre energy consumption stem 
from the rapid growth of artificial intelligence (AI) – particularly generative AI 
applications such as ChatGPT. 

Early studies on the energy and carbon footprint of AI and machine learning (ML) 
focused on the energy and carbon emissions associated with training large language 
models (Lacoste et al., 2019; Luccioni et al., 2020; Schwartz et al., 2019; Strubell et al., 
2019). But training a single ML model represents only a small fraction of the overall 
energy use of AI. Data from Meta (Wu et al., 2022) and Google (Patterson et al., 2022) 
indicate that the training phase accounts for around 20–40% of overall ML-related 
energy use, with the majority (60–70%) from inference (application/use). Less than 
10% is attributed to model development (experimentation).  

As mainstream adoption of generative AI increases, the share of inference in overall AI 
energy use is expected to grow (Schneider Electric, 2023). As new generations of 
smartphones and laptops incorporate AI capabilities (e.g. Apple Intelligence), a 
growing share of AI inference workloads are likely to be handled by devices rather than 
data centres (Kamiya & Kaack, 2024).  

Aggregating for the entire company, Google researchers estimated that ML accounted 
for 10–15% of company-wide energy use in the years prior to 2022 (i.e. 2–3 TWh in 
2021), noting that it was growing at a similar rate as overall company-wide energy use – 
around 20–30% per year (Google, 2023; Patterson et al., 2022). 
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3.3.2 AI energy use in data centres 
One of the first global estimates of AI energy consumption in data centres was 
published in October 2023 (de Vries, 2023). Based on estimated Nvidia’s GPU sales, de 
Vries (2023) estimated that GPUs produced in 2023 could consume 5.7–8.9 TWh 
annually and those projected to be produced in 2027 could consume 85.4–134 TWh. 
The study includes assumptions that overestimate AI energy use (100% utilisation rate 
is too high) and underestimate AI energy use (excludes non-Nvidia GPU and AI 
accelerators and already produced AI accelerators). 

Based on de Vries (2023) but likely misinterpreting the annual growth for 2023 and 
2027 as absolute consumption values for those years, IEA (2024a) projects AI energy 
consumption of 90 TWh in 2026. The same misinterpretation of de Vries (2023) appears 
in a recent article in Nature (Luers et al., 2024). 

Other recent projections have used similar modelling approaches to develop 
projections to 2030, using bottom-up estimates based on the power consumption of 
GPUs and their projected shipments. Projected shipments are often based on a 
combination of manufacturer projections, expert interviews, and macroeconomic 
trends. Schneider Electric (2024) represents an exception, being based on a top-down 
quantitative systems dynamics approach. 

The results of global studies estimating the energy use of AI in data centres are shown 
in Figure 3.5 and summarised in Table 3.4. Due to most studies not providing sufficient 
detail regarding their methods, and the challenges in assessing quality in an emergent 
and rapidly evolving field of study, we do not provide a quality assessment level. 

Figure 3.5 Selected global AI energy use projections, 2020-2030 

  

Notes: Darker circles indicate historical estimates; lighter circles and dotted lines indicate projections. Error bars indicate ranges included in 
scenarios. de Vries (2023) totals based on linear interpolation between the study’s assumed 2023 and 2027 production of AI accelerators, to 
calculate cumulative energy consumption (i.e., each year’s newly built AI accelerators add to the consumption of existing stock). 
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Table 3.4 Overview of studies estimating the global energy use of AI 

Author / Publication Summary  Results Quality assessment 

de Vries (2023) Bottom-up based on current (2023) 
Nvidia GPU sales and a projection based 
on estimated GPU production increases 
by 2027. 

6–9 TWh growth in 2023 accelerating to 
85–134 TWh growth by 2027 

Linearly interpolating growth yields a 
consumption of 14–17 TWh in 2023, and 
236–365 TWh in 2027 

Solid 2023 growth estimate; 
does not state a starting 
value (i.e., for 2022). 
Assumptions behind 
accelerating growth 
undisclosed. 

Deloitte Global (2024) Bottom-up based on data from IDC 
(2024a, 2024c). Baseline scenario 
assumes AI adoption in cost-efficient 
applications. High adoption scenario 
assumes current growth trends in AI 
servers to continue. 

45 TWh in 2023 

230 TWh in 2030 (500 TWh in High 
adoption) 

350 TWh in 2035 (1 000 TWh in High 
adoption) 

Reflects industry data and 
projections of server 
shipments to 2030. 
Projections beyond 2030 
rely on logistic growth rates 
which may differ for AI. 

Gartner (2024a, 2024b) Methodology not disclosed, likely based 
on vendor surveys and market feedback. 
Expects sharp rise from 2023 to 2024 and 
then more moderate growth by 2027 due 
to power availability constraints for DCs. 

74 TWh in 2022 

195 TWh in 2023 

500 TWh in 2027 

Could not be assessed due 
to a lack of methodological 
details.  

Goldman Sachs (2024) Bottom-up based on historical trends and 
projected GPU and specialised hardware 
adoption rates together with projected 
DC CapEx. 

12 TWh in 2023  
(of which 4 TWh in the US) 

209 TWh in 2030  
(of which 93 TWh in the US) 

Future extrapolation based 
on a variety of economic 
values; expectations which, 
however, can be subject to 
rapid change. 

IDC (2024c) Bottom-up estimate based on server 
shipments and analysis by data centre 
type and workload (IDC, 2024b). 

33 TWh in 2023 

146.2 TWh in 2027 

Reflects industry data and 
projections of server 
shipments. 

IEA (2024) Based on de Vries (2023) but likely 
misinterpreting the annual growth rate as 
absolute consumption. 

5 TWh in 2022 

90 TWh in 2026 

Likely misinterpreting the 
results from de Vries (2023).  

Morgan Stanley (2024) Scenario-based future AI adoption rates, 
and thus workload growth forecasts. For 
each of the bear, base and bull scenarios, 
“high” and “low” values (for 4-chip and 8-
chip servers, respectively). 

Base case (Bear to Bull range):  

13.2 TWh in 2023 (11–20 TWh) 

47.55 TWh in 2024 (40–71 TWh) 

224.3 TWh in 2027 (187–336 TWh) 

Considers important factors 
and expert opinions, but 
uncertainties are high. 

Schneider Electric (2023) Bottom-up estimate of current (2023) AI 
energy consumption; forecast based on 
internal growth projections   

4.5 GW (39 TWh/year) in 2023 

14–18.7 GW (123–164 TWh) in 2028 

Exact method undisclosed. 
Appears to be based on 
domain understanding and 
taking into account many 
developments and 
constraints.  

Schneider Electric (2024) Quantitative systems dynamics (QSD) 
exploring four archetypal exploratory 
scenarios. Covers dozens of factors. 
modelled in a core QSD model, with sub-
models focusing on training and 
inference of specific AI types. 

100 TWh in 2025 growing in the four 
scenarios by 2030 to: 

620 TWh (“Sustainable AI”) 
510 TWh (“Limits to growth”) 
880 TWh (“Abundance without 
boundaries”) 
670 TWh (“Energy crunch”) – in this 
scenario, crunch appears from 2031 on. 

Very detailed top-down 
method, which succeeds at 
covering a wide range of 
possible applications. Exact 
factors remain undisclosed 
and constraints might be 
underrepresented. 

Semianalysis (2024) Detailed analysis based on a combination 
of bottom-up data (hardware shipments, 
power requirements by model), market 
data on current and future capacity of 
large operators, and other data (e.g. 
permits, satellite data). 

20 TWh in 2022 

30–50 TWh in 2023 (~40 TWh base case) 

80–350 TWh in 2025 (~200 TWh base) 

150–900 TWh in 2028 (~650 TWh base) 

Very robust and detailed 
analysis combining multiple 
types and sources of data. 
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Several studies have estimated the energy use of AI servers in the United States. 
Shehabi et al. (2024) estimate that AI-specialised servers in the US accounted for less 
than a quarter (22%) of total data centre energy use in 2023 (40 TWh) and projected this 
share to rise to 50–55% by 2028 (165-325 TWh). Researchers at the Center for Strategic 
and International Studies (CSIS) estimated AI data centres in the US consumed 4 GW 
in 2024 (~35 TWh), and projected this to rise 20-fold by 2030 to 84 GW (~735 TWh) 
(McGeady et al., 2025). Another recent study published by RAND Corporation 
projected AI data centre capacity could grow to 327 GW by 2030 – a 30-fold growth 
from 2024, and equivalent to two-thirds of current US electricity consumption (RAND, 
2025).  

The domain is so recent that not even its system boundaries are well-defined (Masanet 
et al., 2024). Some of the sources only consider GPUs from one manufacturer (Nvidia), 
while others consider all hardware for accelerated computing, such as GPUs from 
other manufacturers and other AI accelerators such as TPUs. Others may also 
consider some share of CPUs used for inference. There are also questions of whether a 
share of end-user devices count as well towards the energy and environmental impact 
of AI, given the growing role of AI inference on end user devices such as smartphones. 

3.3.3 AI projections to 2030 
The plausibility of an upper-bound AI energy projection to 2030 can be assessed based 
on conservative assumptions of costs and power consumption of GPUs. The B100 GPU 
is estimated to cost around USD 30–35k (Trueman, 2024) and has a thermal design 
power (TDP) of 700 W (Nvidia, 2024). We conservatively assume similar costs for the 
more performant Nvidia Blackwell B200, with a TDP of 1 000 W (Nvidia, 2024). 

Further conservative assumptions include a utilisation rate of 100% for all GPUs and AI 
hardware ever sold and that energy consumption at peak workload equals the TDP. 
Both assumptions are highly conservative, given actual peak workload power 
represented a much lower 37 – 72.3% of TDP in one study (Govind et al., 2023). 

Every 100 TWh of yearly AI data centre energy consumption correspond to 11.4 GW of 
average power over the entire year. This would require 11.4 million Nvidia Blackwell 
B200 GPUs running in parallel for the entire year at 100% utilisation rate and peak 
workload power equal to TDP (our conservative assumptions). Assuming a unit cost of 
USD 30k this would require an investment of over USD 340 billion in GPUs alone for 
every 100 TWh of additional yearly AI consumption in data centres.2  

This means that USD 500 billion in AI investments, announced as a target of the US 
government over the next 5 years, would consume 146 TWh annually if all investments 
went to GPUs and other AI accelerators. This upper-bound estimate excludes other 
costs, many of which are substantial (e.g., the construction of the data centres 
themselves, electricity, wages) and may be included in the USD 500 billion target.  

If the US accounts for about half of the world’s AI computing – similar to its share of 
hyperscale data centres – this implies a global investment of about USD 1 trillion AI 
investment and 300 TWh in AI DC consumption in 2030.  

 
2 More realistic assumptions (i.e., utilisation rate below 100% and peak energy lower than the TDP) would require a correspondingly higher 
investment to reach the same yearly consumption of 100 TWh. 
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The higher-end estimates of 700–900 TWh would imply meeting several unlikely 
conditions: 

• cumulative capital expenditures to 2030 of over 2 trillion USD in accelerated 
hardware (such as GPUs or TPUs), excluding other capital expenditures and 
ongoing operational costs such as electricity and wages, 

• 100% utilisation of all chips ever produced and that peak workload power 
equals TDP, 

• no other technological, resource (energy, water) or societal constraints.  

We thus consider these higher-range values to be unrealistic. Based on the best 
available information today, we project AI energy use in data centres is likely to reach 
200–400 TWh in 2030 – in line with the lower range of projections in Figure 3.5.  
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4. Estimating the energy use of data centres 
This chapter describes how the outcomes of the critical review and analysis are used 
to inform and develop our own estimates of data centre energy use from three 
perspectives: global, country-level, and company-level. 

4.1 Modelling methodology 
In Chapter 3, we comprehensively and critically reviewed the existing literature on data 
centre energy use, including our quality assessment of each study.  

We focus on the results of studies that we rated as “high” – those with a high degree of 
methodological rigour and transparency. If estimates for 2023 were not available, an 
estimate for 2023 was interpolated or extrapolated based on estimates for other years. 

We then combined the best available country and regional-level estimates with best 
available estimates at the global level to provide a plausible range of global data centre 
energy estimates for 2023. Company-level data is also analysed to provide a lower 
bound estimate for cloud and hyperscale data centres. 

4.2 Global estimates 
Our review of global estimates shows that seven high-quality studies (covering 11 
estimates) with estimates for 2023 had a range of 210–440 TWh with an average base 
case estimate of 335 TWh (Figure 4.1). 

Figure 4.1 Estimates of global data centre energy use in 2023, by assessed quality 

 

 

Notes: Range of estimates include all scenarios, while average values are for base cases only. Numbers in parentheses indicate the number 
of studies (s) and estimates (e). “Not assessed” are studies that did not share sufficient methodological detail to assess their quality.  
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4.3 Regional and country-level estimates 
At the regional level, we estimate that data centres consumed: 

• 125–200 TWh in North America (including 120–195 TWh in US and 3–6 TWh in 
Canada) 

• 105–180 TWh in Asia Pacific (including 70–130 TWh in China, 10–20 TWh in 
Japan, 8–12 TWh in Australia, 6–9 TWh in India, 5 TWh in Singapore, 3–5 TWh in 
South Korea, and 2–3 TWh in Malaysia) 

• 55–80 TWh in Europe (including 50-70 TWh in EU27, 4–8 TWh in UK, 1–2 TWh in 
Norway, ~1 TWh in Iceland) 

• 5–10 TWh in other regions (including 2 –3 TWh in Latin America and 1–2 TWh 
each in Africa and the Middle East). 

This implies that using best available country and regional-level estimates, data 
centres globally consumed 290–470 TWh in 2023, with a central estimate of 
360 TWh. The US (41%), China (25%), and Europe (19%) accounted for 85% of the 
global total (Figure 4.2, left). 

Based on this analysis, data centres in the US accounted for around 3.5% of national 
electricity demand in 2023, compared with 2.2% in the EU27 and around 1% in China 
(Figure 4.2, right). The highest share of national electricity demand from data centres 
was in Ireland (21%) and Singapore (9%). 

Figure 4.2 Data centre electricity use and share of total electricity consumption by region (left) and 
for select countries and regions (right) 

 

Notes: N. Am. = North America. APAC = Asia Pacific, including Oceania. RoW = rest of world, including Latin America, Africa, and the Middle 
East. EU27 = European Union 27. IE = Ireland. SG = Singapore. 
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4.4 Aggregated company-level data 
Many of the largest data centre operators report their annual company-wide energy 
use and greenhouse gas emissions data through their corporate sustainability reports 
and to CDP. While some of these companies also have major non-data centre 
business divisions such as telecommunication networks, retail stores, warehouses, 
and offices that use electricity, in most cases, the majority of electricity used by large 
data centre operators are consumed in data centres, making company-wide trends a 
useful proxy for data centre energy use trends. 

While most of the largest data centre operators publicly disclose company-wide 
electricity use, only a select few have disclosed detailed information about electricity 
used by their data centres (Masanet et al., 2024). Apple, Meta, and Salesforce 
disclosures show that data centres accounted for 67%, 98%, and 94% of company-
wide electricity use in 2023 respectively (Apple, 2024; Meta, 2024; Salesforce, 2024). 
Where possible, proxy data were used to estimate the share of data centre electricity 
as a share of company-wide electricity (e.g. Scope 2 emissions from data centres as a 
share of total Scope 2 emissions for the company, combining reported water 
consumption and WUE). For years where data were not disclosed, estimates were 
extrapolated based on trends of available years, as well as energy intensity factors 
(revenue per kWh). 

Aggregating company-wide electricity consumption data from 603 large data centre 
and technology companies results in a combined company-wide total of 320 TWh in 
2023, of which data centres consumed around 200 TWh (63%) (Figure 4.3).  

Company-wide electricity use of the four largest data centre operators – Amazon, 
Alphabet (Google), Microsoft, and Meta (Facebook) – more than tripled between 2018 
and 2023 from around 35 TWh to over 110 TWh. We estimate that data centres likely 
accounted for around 80% of the combined company-wide total for these four 
hyperscalers in 2023, or around 90 TWh. 

Colocation data centre operators are also large energy users. For example, Digital 
Realty (11.1 TWh), Equinix (8.2 TWh), CyrusOne (4.2 TWh), QTS (2.6 TWh), Vantage 
Data Centers (2.6 TWh), and EdgeConneX (1.3 TWh) collectively accounted for 30 TWh 
of electricity use in 2023. While these companies are headquartered in the US, they 
operate data centres globally. 

In China, tech companies Alibaba (8.3 TWh), Huawei (5.6 TWh), Tencent (5.1 TWh), 
JD.com (1.8 TWh), and Baidu (1 TWh) used around 22 TWh, while colocation operators 
GDS (5.4 TWh), Chindata (3 TWh in 2022), and VNET (1.3 TWh) accounted for nearly 
10 TWh. The three major telecommunication operators in China are also large data 
centre operators, with data centres likely accounting for around one-quarter of total 
company-wide electricity (27 TWh out of 110 TWh). In total, we estimate that data 
centres of companies headquartered in China accounted for around 56 TWh of 
electricity use (most but not all consumed in China). 

 
3 Airtrunk, Akamai, Alibaba, Alphabet (Google), Amazon, Apple, Ascenty, Baidu, China Mobile, China Telecom, China Unicom, Chindata, 
Cloudflare, Cologix, Colt DCS, COPT, CoreSite, CyrusOne, Databank, Digital Edge, Digital Realty, EdgeConneX, Equinix, Flexential, GDS, 
Global Switch, Green Mountain, Huawei, IBM Cloud, Iron Mountain, JD.com, Kakao, Kao Data, KDDI Telehouse, Keppel DC REIT, Kingsoft 
Cloud, Kuaishou Technology, LG CNS, Lumen, Meta (Facebook), Microsoft, Naver, Netflix, NextDC, NTT Data, Oracle, OVH Cloud, QTS, 
Rackspace, Sabey, Salesforce, SAP, ST Telemedia, SUNeVision, Switch, Tencent, Vantage, VNET (21Vianet), Xiaomi, Zayo. 
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Figure 4.3 Estimated electricity use by large data centre operators and technology companies, 
2018–2023 

 

Notes: Striped data for companies indicate authors’ own estimates due to a lack of publicly reported data; estimates based on other 
available data on energy, emissions, and revenue. “US Colo + Cloud” includes colocation and cloud companies headquartered in the United 
States, including Digital Realty, Equinix, CyrusOne, QTS, Vantage, and Oracle. “China Big Tech” includes tech companies headquartered in 
China, including Alibaba, Baidu, Huawei, JD.com, Kuaishou Technology, Tencent, and Xiaomi. “China Colo + Telco” includes large 
colocation operators including GDS, Chindata, and VNET, as well as the three largest Chinese telecommunication operators China Mobile, 
China Telecom, and China Unicom. 
Sources: Own analysis based on company ESG reports, CDP disclosures, and other publicly available data. 
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5. Discussion 

5.1 Summary of results 
The results of the three approaches are summarised in Figure 5.1: 

• High quality global studies: 335 TWh (210–440 TWh) 

• High quality regional and country-level studies: 360 TWh (290–470 TWh) 

• Extrapolation of company-level data: 340 TWh (300–380 TWh). 

Figure 5.1 Results of three complementary approaches to estimate global data centre energy 
use in 2023 

 

Notes: Global review includes studies that were assessed to be ‘5 - High’. Central estimate indicates authors’ best estimate. 
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5.2 Key parameters influencing results 
As discussed in Section 0, we categorised the studies into several key parameters, 
including affiliation type (e.g. industry, government, academia), publication type (e.g. 
peer-reviewed, report), and modelling approach (e.g. bottom-up, temporal proxy 
extrapolation). 

5.2.1 Modelling approach 
Across all studies, we find that the modelling approach has the biggest impact on the 
assessed quality and results. Studies using temporal proxy extrapolation approaches 
were assessed to be the lowest overall quality, with the largest range in estimates.  

Global estimates from studies employing temporal extrapolation had a wide range, 
from under 200 TWh to around 2 000 TWh in 2023. The average estimate across all 
scenarios in these studies was 790 TWh – over twice our estimated total for 2023 
based on the best available data. 

In contrast, studies using bottom-up and hybrid approaches were assessed to be of 
higher quality, with a much narrower range of estimates. Global bottom-up studies 
ranged from 210–500 TWh for 2023, with an average estimate across all scenarios of 
around 390 TWh. Studies employing hybrid approaches had a range of 255–525 TWh, 
with an average estimate of around 365 TWh. 

5.2.2 Author affiliation 
Affiliation type – for example, whether the researchers were from academic institutions 
or industry – had limited correlation with the study quality or whether the estimates 
were low or high. 

For example, the lowest quality studies published prior to 2024 came from researchers 
affiliated with industry (Huawei), academia (McMaster University), and a think tank (the 
Shift Project). These typically had both the widest range and highest estimates of all 
publications (see Figure 4.1). Worst-case scenario projections for 2030 or 2040 from 
these studies were widely cited by the media to exaggerate the future energy and 
climate impact of data centres. 

Meanwhile, some of the highest quality studies have come from different types of 
organisations, including academic and government-affiliated researchers (Lawrence 
Berkeley Lab, UC Santa Barbara), intergovernmental organisations (IEA), and industry 
(Ericsson and Telia; IDC; Semianalysis). 

One notable trend over the past year is that a series of reports on data centres and AI 
have been published by consulting firms (BCG, Deloitte, McKinsey, S&P Global) and 
investment banks (Goldman Sachs, Jeffries, Morgan Stanley). With the exception of 
Deloitte Global (2024), these studies tend to be of lower quality (using temporal 
extrapolations) or lack any disclosure of methodological detail or assumptions, making 
quality assessments not possible. 
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5.2.3 Other parameters 
The vast majority of estimates published since 2014 have been company or 
government reports, with only nine global estimates published as peer-reviewed 
articles. Five of these were assessed to be of low or low-medium quality, despite 
undergoing peer review (Andrae, 2019a, 2020; Andrae & Edler, 2015; Belkhir & Elmeligi, 
2018; Liu et al., 2020). In some cases, these peer-reviewed articles were published in 
less reputable journals (and publishers) such as Challenges (MDPI), International 
Journal of Green Technology (no longer active), and Engineering and Applied Science 
Letters (PISRT). 

Generally, studies that provided long-term projections (e.g. more than 10 years from 
the date of publication) were of lower quality, as they generally relied on temporal 
proxy extrapolations. 

5.3 The limits and necessity of projections: Learning from the past 
As discussed from the outset, the main motivation behind this study was the wide 
range of existing estimates on global data centre energy consumption. This 
inconsistency, which has also been addressed in the literature (Bremer et al., 2023), is 
emphasised in Figure 3.1 for the 2030 projections and in Figure 3.2 for current (i.e., 
2022) estimates. 

When it comes to the energy demand – and more generally, environmental impacts – of 
digital technologies, such large variation of estimates is nothing new. Over the past 25 
years, there have been several such instances; two of them, however, are most 
noteworthy. 

5.3.1 Late 1990s to early 2000s: “Dig more coal, PCs are coming” 
A 1999 Forbes article titled “Dig more coal -- the PCs are coming” painted a bleak 
picture of the growing energy consumption of the Internet, forecasting for the US that 
“it’s now reasonable to project that half of the electric grid will be powering the digital-
Internet economy within the next decade” (Huber & Mills, 1999). The authors of the 
article argued that the growth of the internet meant that further expansion of coal-fired 
power was necessary to maintain secure supply of electricity. 

US data centre energy demand more than doubled between 2000 and 2008, 
approaching almost 2% of national electricity use in 2008 – but a far cry from ‘half the 
electric grid’. Meanwhile, coal-fired power has declined by nearly two-thirds in the US 
since 1999 – from nearly 1 900 TWh (51% of supply) to just 675 TWh in 2023 (16% of 
supply) (US EIA, 2024). 

In those early days of ICT environmental impact assessment, uncertainties were 
particularly high, and results wide apart. As analysed by Coroamă & Hilty (2014) and 
then in more detail in Coroamă (2021), the two early estimates for the energy intensity 
of the Internet (i.e., the amount of electricity required to transmit a certain amount of 
data across the Internet on average) were 136 kWh/GB by Koomey et al. (2004) and 
0.0064 kWh/GB by Baliga et al. (2011) – a factor of 20,000 apart.  
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While one order of magnitude of this gap could be explained through the efficiency 
gains in the seven years between the two estimates, the other three orders of 
magnitude stemmed from methodological differences, such as different system 
boundaries, deployed assumptions, and the opposing biases inherent to the two top-
down and bottom-up methods used, which led to an overestimate in one case and an 
underestimate in the other (Coroamă, 2021). Interestingly, the study with the high-end 
(later proven to be substantially overstated) estimate in Koomey et al. (2004), had been 
written to counter the much higher assessment published by Forbes (Huber & Mills, 
1999), which had generated strong public reaction.  

5.3.2 Late 2010s: “Tsunami of data could consume one fifth of 
global electricity by 2025” 
The second period of both diverging estimates and exaggerated projections started 
with the paper by Andrae & Edler (2015), which marks the upper end of the estimates 
shown in Figure 3.1.  

The study’s worst-case scenario projected data centre electricity consumption of 
nearly 8 000 TWh by 2030, equivalent to 28% of projected global electricity demand in 
2030. The “expected” scenario projected data centres would use 3 000 TWh per year 
by 2030, which would still mean over 10% of global electricity consumption.  

While formally peer reviewed – albeit by MDPI, a publisher with quality-related 
controversies (Brainard, 2023; Clarivate, 2025) – the study does not address obvious 
and crucial economic or technological feasibility questions such how the required 
additional power plants and electricity grids would be built or about the price increases 
and for, and related feasibility of, digital services in such a scenario. 

The simplistic assumption deployed by the paper is that global data centre (DC) energy 
is a product of DC IP data traffic (PB) and its energy intensity (MWh/PB), with some of 
the energy demand growth mitigated by three levels of energy efficiency improvement 
scenarios (best, expected, and worst case). Data traffic, however, is a poor proxy for 
DC energy consumption, which relates more closely to the amount of computation in 
servers and the stored data, the former of which does not relate at all to traffic, and the 
latter of which only vaguely relates to traffic. 

Despite these methodological, feasibility, and publishing shortcomings, the results 
from Andrae & Edler (2015) were included in a 2018 Nature “news feature” (Jones, 
2018). While being a non-peer reviewed piece written by a staff journalist, the Nature 
article helped to increase the reach of the original 2015 study. As of February 2025, 
Andrae & Edler (2015) has been cited nearly 1 500 times, while the Jones (2018) Nature 
article has been cited over 1 000 times, as per Google scholar.  

Another peer-reviewed publication, Belkhir & Elmeligi (2018), extrapolated data centre 
energy use to 2040 based on a 12% compound annual growth rate, implying projected 
data centre energy consumption of around 3 000 TWh by 2030 and nearly 10 000 TWh 
by 2040. The study – which focuses on the carbon emissions from the ICT sector – have 
also been widely quoted in news articles and has been cited over 1 100 times. 

Anders Andrae, the lead author of the 2015 study, has since updated the original 
assumptions and estimates – reflecting the new insights – in subsequent publications 
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in 2019 and 2020 (Andrae, 2019b, 2020). For example, 2030 ‘expected’ projection in 
the most recent 2020 article is 974 TWh – three times lower than the ‘expected’ 
projection (2 967 TWh) in the original 2015 study. At the same time, however, the old 
vastly overstated numbers not only gained momentum through the Nature news 
feature mentioned above, but also through a study published in early 2019 by the Shift 
Project, a French think tank, adapting the original 2015 model.  

Building on the Andrae & Edler (2015) model and adding own assumptions and 
calculations on the network energy consumption, this study estimated that video 
streaming emits 3.2 kg CO2 per hour (The Shift Project, 2019a). This estimate was 
picked up by several major newspapers and media outlets on both sides of the 
Atlantic, including Le Monde, The Guardian, NZZ, and Wired. Several other media 
outlets subsequently reported that “the emissions generated by watching 30 minutes 
of Netflix [1.6 kg of CO2] is the same as driving almost 4 miles” – among them the New 
York Post, CBC, Yahoo, DW, Gizmodo, Phys.org, and BigThink (Kamiya, 2020a, 2020b). 

As detailed in a subsequent fact check published by Carbon Brief and the International 
Energy Agency, the Shift Project analysis had not only used the outdated and 
overstated numbers from Andrae & Edler (2015) but introduced own questionable 
assumptions and errors, such as mistakenly using bytes instead of bits and thus 
introducing an error factor of eight (Kamiya, 2020a, 2020b). Overall, the study 
overstated the energy and climate impact of video streaming by two orders of 
magnitude. 

5.3.3 Current AI-driven energy surge: Déjà vu or is it for real? 
Both examples above show periods of vast overestimates of the energy or GHG impact 
of ICT, in the context of high uncertainties and widely varying estimates. In both cases, 
history has shown that the more conservative, lower estimates were closer to the 
truth. Both examples also show how easily the alarmistic estimates or projections 
were spread in the past once picked up by mainstream media, even though they relied 
on thin scientific evidence. Past experiences also show how difficult it is to correct the 
alarmistic numbers once they entered public consciousness – a phenomenon referred 
to as Brandolini’s law (Williamson, 2016). 

As shown throughout this study, in the past, the higher-quality estimates typically 
yielded more conservative values, and have later been proven right. There is, however, 
widespread concern that the energy consumption induced by AI might indeed lead to a 
quickly increasing data centre energy use. The question thus arises whether this is now 
yet another moment of alarmistic overstatements or whether this time the concerns 
are legitimate and there is a possibility, perhaps even a large likelihood, that AI might 
indeed induce a sharp growth in data centre energy demand. 

Past overstatements notwithstanding, it is clear that data centre energy consumption 
is currently on the rise largely driven by surging demand for generative AI. While server 
and data centre infrastructure efficiency gains coupled with the shift to cloud and 
hyperscale data centres largely compensated the growing demand in digital services 
between 2010 and 2018 (Masanet et al., 2020), this is no longer true today. The 
estimated total data centre electricity use of 60 of the largest operators has doubled 
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between 2018 and 2023, while the combined data centre electricity use for the four 
largest operators has more than tripled (Section 4.4). 

Additionally, sources that we consider highly credible such as Shehabi et al. (2024) 
project a further, more rapid growth, with roughly a doubling within the next four to five 
years in the US. Given the considerable corporate and government interest in rapid AI 
development in other regions including Europe and Asia, it is highly plausible to 
foresee continued growth in data centre energy use globally.  

Global data centre energy use rose by around 6% between 2010 and 2018 (Masanet et 
al., 2020), equivalent to an average annual growth rate of 0.7% per year. However, 
since 2018, global data centre energy use has grown by around 50–80%, equivalent to 
an average annual growth rate of 8–13% per year. If these trends continue, this implies 
a range of global data centre energy consumption of 600–800 TWh in 2030, equivalent 
to 1.8–2.4% of global projected electricity demand in 2030. A higher growth rate of 20% 
driven by AI could result in energy consumption in the range of 1 100–1 400 TWh, 
equivalent to 3–4% of global projected electricity demand in 2030. 

Based on the review of existing AI energy studies (Section 3.3) and an economic 
plausibility assessment (Section 3.3.3), we project AI-related data centre energy use to 
increase from around 30–50 TWh in 2023 to 200–400 TWh by 2030. In other words, we 
expect AI-related energy use in data centres to increase from 10–15% of overall data 
centre energy use in 2023 to 35–50% in 2030. 

While the growth of data centres and AI are expected to be an important driver of 
electricity demand growth, electric vehicles, air conditioners, and electricity-intensive 
manufacturing are expected to be larger drivers of electricity demand growth globally 
(IEA, 2024b; Spencer & Singh, 2024). 

It is important to acknowledge that the current and future energy demand impacts of 
data centres are unevenly distributed around the world. Data centres already account 
for over one-fifth of overall electricity demand in Ireland and Virginia. While the overall 
growth at the global level are smaller than other demand drivers discussed above, the 
highly concentrated nature and very high power density of data centres creates 
significant challenges at the local level, including grid connection and capacity 
constraints, water consumption, and community opposition. 
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6. Conclusions and recommendations 

6.1 Summary of key conclusions 
The main objective of this study was to identify and critically review data centre energy 
estimates to understand the current (2023) global energy use of data centres. Over 50 
publications with global estimates were identified and critically reviewed, including 35 
with estimates, projections, or extrapolated values for the year 2023. 

The review process evaluated each study’s methods and the data sources, with quality 
assessed on a six-point scale: low, low-medium, medium, medium-high, high, and 
very high. Publications that did not provide sufficient detail regarding their 
methodologies were categorised as ‘not assessed’ (N/A). 

Studies assessed as ‘low’ (seven publications) – all using temporal extrapolation 
approaches – had the widest range of estimates and projections for the year 2023, 
ranging from 480 TWh to 2 000 TWh across 17 scenarios and cases. Studies of higher 
assessed quality (low-medium and higher, 22 publications) had a much lower and 
narrower range of estimates (190–560 TWh) across 43 scenarios and cases. The eight 
high-quality studies (covering 12 estimates) yielded results in the range of 210–440 
TWh in 2023, with an average base case estimate of 335 TWh. 

To corroborate these results, we pursued two further assessment methods: the 
aggregation of high-quality regional and country-level studies and the aggregation of 
company-level data. 

The global aggregation based on regional and country-level estimates followed the 
same approach as the global review. Partially overlapping with the global studies, 23 
publications related to the US, 44 on Europe, 11 on China, and 12 on the rest of the 
world were reviewed. Some of the regional estimates – unlike their global counterparts 
– were assessed to be of a ‘very high’ quality. The aggregation of best available regional 
estimates yields a range of 290–470 TWh in 2023, with a central (best guess) estimate 
of 360 TWh. 

For the aggregation of company-level data, reported energy consumption data from 
sustainability reports and other public disclosures of 60 of the largest data centre 
operators were collected and analysed. Extrapolating these figures to the entire market 
and adding a third-party estimate for enterprise data centres resulted in a range of 
300–380 TWh in 2023. 

The range of values resulting from these three largely independent approaches 
corroborate well. Combining the results of these three approaches, we estimate that 
the operational global data centre energy use in 2023 was 300–380 TWh. 

This study also proposes new, more precise terminologies to classify modelling 
approaches. The literature typically refers to studies that employ extrapolations into 
the future (based on high-level proxies), as ‘extrapolation’. To avoid confusion with 
other extrapolation methods such as scope extrapolation (to cover a region or market), 
we propose a more precise term of ‘temporal proxy extrapolation’. In addition, we note 
that what are typically referred to as ‘top-down’ methods are actually the aggregation 
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of bottom-up assessments and should be referred to as ‘aggregated totals’. True top-
down assessments in this field (e.g., based on quantitative system dynamics) exist, but 
are few and far between. 

Given its importance in driving data centre energy growth, this review includes a deep 
dive into existing AI energy assessments, covering both current estimates and 
projections. While all sources agree that currently AI is responsible for a relatively 
modest total amount of just a few dozen TWh globally per year, projections for 2028 to 
2030 diverge considerably. By the end of the decade, some studies project AI energy 
consumption to grow to 200–400 TWh, while others project a much larger growth to 
600–900 TWh. Due to economic and further constraints, we believe the former to be 
more likely. 

6.2 Recommendations  
To conclude the report, we offer a series of recommendations to key stakeholders – 
data centre energy modellers, data centre companies, policymakers, journalists, and 
civil society – on how they can contribute to better data, models, and estimates to 
inform decision making. 

6.2.1 Improving models and estimates 
Drawing on key lessons and guidance from Bremer et al. (2023), Koomey & Masanet 
(2021), Masanet et al. (2024), Mytton & Ashtine (2022) we recommend the following 
areas of action to improve data centre energy models and estimates. 

Improve data collection, quality, and transparency 

• Companies and governments should improve data accessibility and 
transparency through systematically collecting and publicly reporting timely, 
high-quality data on data centre energy use at company and country levels. 
This can be encouraged by investors as well as government policies and 
regulations such as the EU Energy Efficiency Directive4. 

• Data centre energy modellers should collect data instead of making 
assumptions whenever possible. Modellers are encouraged to validate and 
improve their models by anchoring data and assumptions with real world data 
and measurements. 

• Data centre energy modellers should report their results precisely and 
transparently. 

Increase methodological rigour and transparency 

• Data centre energy modellers should clearly define system boundaries (e.g. 
what type of data centres are included or excluded, whether the results include 
crypto). Methodologies and data sources should be clearly and 
comprehensively described and cited to enable replication. 

 
4 The revised EU Energy Efficiency Directive (EU/2023/1791) introduces obligations for data centres with total IT power over 500 kW to 
publicly report their energy performance data annually. 
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• Data centre energy modellers should use bottom-up modelling approaches 
based on granular data, combined with other modelling approaches and 
perspectives to triangulate and validate results. For global estimates, top-
down models such as quantitative system dynamics or input-output analyses 
can be helpful for validation. 

• Modellers should critically assess any input data sources and assumptions. 
Old data and assumptions should not be used to estimate current or future 
impacts due to the fast-moving nature of digital technologies. 

• Given the significant future uncertainty of digital technologies and their energy 
use characteristics, modellers should develop “what if” scenarios that reflect a 
range of possible outcomes based on different trajectories for bottom-up 
drivers. 

• Long-term projections (beyond five years) should be avoided. Modellers should 
acknowledge and use caution when drawing conclusions from extrapolations 
beyond a few years. 

• Economic, technological and societal constraints such as foreseen costs, 
power grid availability and societal acceptance can be helpful validation 
approaches. 

• Journal editors should ensure thorough and robust review processes and 
include ICT energy experts as reviewers. 

6.2.2 Guidelines for interpreting and critically assessing studies 
Journalists, policymakers, and other non-experts can ask the following questions when 
assessing the quality of studies. If the answer is “no” or “I don’t know” to more than 
two of the following, the study is likely to be of lower quality. 

• Does the study rely primarily on measured data (e.g. company data, national 
estimates or data from governments) and/or bottom-up modelling 
approaches? 

• Does the study clearly state the scope of analysis, and what is included or 
excluded from the analysis? 

• Do the research authors have demonstrated expertise in data centre energy 
modelling? 

• If the study includes projections more than five years from today, does it 
include more than one scenario? Do the authors use bottom-up drivers to 
project future demand instead of extrapolating compound annual growth rates 
(CAGR)? 

6.2.3 Summary of recommendations 
Energy modellers, data centre companies, governments, journalists, and civil society 
all have important roles to play in improving the quality of assessments. Table 6.1 
summarises our key recommendations for each stakeholder group.  
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Table 6.1 Recommendations for key stakeholders  

Stakeholder Best practice (Do) Poor practice (Don’t) 

Data centre energy 
modellers 

ü Use bottom-up modelling approaches and granular data, 
combined with other modelling approaches and 
perspectives to triangulate results 

ü Explain methodology and cite data sources 
comprehensively and transparently 

ü Report results precisely and transparently, ideally in a table 
format 

ü Develop "what if?" scenarios and sensitivity analyses to 
understand and explore uncertainties 

ü Analyse the whole system 

ü Advocate for policies that promote data collection and 
transparency regarding the energy use of data centres to 
improve research quality 

ü Consider economic, technological, societal, and other 
practical constraints 

û Combine retrospective intensity 
parameters (e.g. energy intensity of data 
centre IP traffic) with projected future 
service demand to project future energy 
demand 

û Average key parameters 

û Extrapolate results more than 5 years from 
baseline data using ‘expert judgment’ 
compound annual growth rates 

û Cite sources of key results or analysis as 
“Company X analysis or model” 

 

 

Data centre companies ü Increase reporting frequency, timeliness, and detail (at 
minimum, total energy use of data centres; ideally at the 
data centre level) 

ü Disclose energy data transparently and consistently, e.g. in 
a table format with clear definitions 

ü Support policies that promote data collection and 
transparency to support policy and strategic discussions 
based on sound research 

û Fail to disclose any energy or 
environmental data 

û Hide or obscure key energy data (e.g. 
company-wide energy use) 

Policymakers and 
regulators 

ü Implement policies and regulations that require data centre 
operators to disclose key energy use information 

ü Collect, validate, and publish national and regional data 
regarding data centre energy consumption 

ü Base policy decisions on multiple credible sources 

û Base policymaking on sources developed 
by those with limited domain expertise or 
conflicts of interest 

Journalists ü Avoid cherry picking the most extreme scenarios and 
projections 

ü Provide context for readers, including key uncertainties and 
distinctions between local and global impacts 

ü Critically assess the quality of studies, and speak to 
multiple experts to understand the quality of new research 

û Cherry-pick the most extreme scenario 
results to exaggerate or downplay the 
energy and environmental impact of data 
centres 

Civil society ü Advocate for policies that promote data collection and 
transparency regarding the energy use of data centres 

û Develop or amplify poor quality analysis or 
extreme results to support positions 

Sources: Developed by authors drawing on Koomey & Masanet (2021) and Masanet et al. (2024). 
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