

IEA-4E SSL Annex - Task 2 Lifetime of SSL Lamps and Luminaires

Webinar 2022-11-29
Steve Coyne and ?????

Predictive life test incorporating accelerated aging

Australian Research Activity

Current Research

To gather test data to explore accelerated LED lifetime testing through the measurement of the rate of decline in light output while a lamp is operated at an elevated ambient temperature (e.g. 60 °C) for 1,500 hours and linking with luminous flux relationship for ambient and junction temperatures.

Test Method

1. Accelerated Degradation Test (ADT)

a) Lamps #1 - #5:

Operate in thermal chamber at a constant 60°C ambient temperature for a total of 1500 hours with measurements conducted at 0 hours and at 150-hour intervals

b) Lamps #11 - #15:

Store (i.e. no power connected) in thermal chamber at a constant 60°C ambient temperature for a total of 1500 hours with measurements conducted at 0 hours, and subsequently at 150-hour intervals.

c) Measurement of photometric quantities (flux, spectral, TLM) of lamps

2. Pulse and Soak Tests

a) Lamps (#6 - #10):

Measure at start-up (pulse) & stabilised (soak) total luminous flux in integrating sphere at ambient temps of 25°C and 40°C to 100°C in 10°C steps

Model Types to Test

Sample types selected

Five A-shape models are under test (16 units of each)

Selected "quality" (brand) products. Do not want lamps to fail early (not the purpose of this research).

LN Code	Lamp type	LED type	Dim	Rated Power	Rated Lumens	Calculated Rated efficacy	Lifetime	ССТ	Reason for selection	Unit Price
LNLED185	A80	СОВ	no	19	2300	121.1	10,000	6500	High powered lamp with low life yet still high efficacy claim.	\$ 22.00
LNLED186	A61	СОВ	no	9	840	93.3	15,000	CW	Average efficacy and typical life claims	\$ 5.00
LNLED187	A50	СОВ	no	6	470	78.3	15,000	WW	Very low efficacy claim but typical life claim	\$ 7.00
LNLED188	A60	Filament	no	9.5	1350	142.1	15,000	WW	Expected filament efficacy claim but no life claim	\$ 12.30
LNLED189	Fancy	Filament	yes	5	470	94.0	25,000	3000	Very low efficacy claim for filament LED and but long life claim	\$ 9.90

Reminder: Pulse – Soak Test Theory

Pulse Test

Thermal co-efficient

$$K_T = 1 + \alpha . \Delta T$$
$$= 1 + \alpha . (T_0 - T_1)$$

 K_T is determined from a **pulse test** (0.5 s) with fixed drive current, I, and various ambient temperatures, which are same as the LED chip junction temperatures.

Ambient Temp, T_a

Soak Test

Current-thermal interaction co-efficient

$$K_{iT} = \frac{\left(\phi_{P_{T_0}} - \phi_{S_{T_0}}\right)}{\left(\phi_{P_{T_1}} - \phi_{S_{T_1}}\right)}$$

 K_{iT} is determined from combination of the **pulse test** results above and a **soak test** with fixed drive current, I, with stabilised LED chip operating junction temperatures for the set ambient temperatures of T₀ and T₁.

Pulse Test Timing

Example of Pulse & Soak Test Results

LNLED 185

2220 202

IEA Technology Collaboration Programme on Energy Efficient End-Use Equipment

LNLED 186

0000 00

IEA Technology Collaboration Programme on Energy Efficient End-Use Equipment

LNLED 187

IEA Technology Collaboration Programme on Energy Efficient End-Use Equipment

LNLED 188

13

IEA Technology Collaboration Programme on Energy Efficient End-Use Equipment

LNLED 189

IEA Technology Collaboration Programme on Energy Efficient End-Use Equipment

From Earlier Presentation (May 2021)

Predictive equation

With values derived from:

Results: Prediction based on Accelerated Life Test & Pulse Soak Test

						Predicted	Rated
	$A_{60^{\circ}}$	$\beta_{60^{\circ}}$	K _T	K _{iT}	L _{70,60°}	L _{70,25°}	L _{70,25°}
LNLED 185	0.995748	-0.00025	0.917486	1.030325	1,438	1,711	12,000
LNLED 186	1.023181	-0.00015	0.893814	0.93969	2,566	4,748	15,000
LNLED 187	1.00904	-5.5E-05	0.879594	0.979994	6,608	11,127	15,000
LNLED 188	0.997225	-3.3E-05	0.92831	0.888968	10,740	23,490	15,000
LNLED 189	0.998672	-1.9E-05	0.920403	0.888731	18,792	43,238	15,000

Need to correlate with results from recognised test and prediction methods (ANSI/IES LM84 and ANSI/IES TM28).

 Propose to use Lamps #11 - #15 which have been stored at 60 deg C and tested at 150 hour which showed no change in measured values.

4

Osram

Recognised Method for L₇₀ Measurement / Prediction

Analysis Ongoing.....